Key answers - Preparatory I 2021-22		
Q. No.	Answers	Marks
I. 1	What are matter waves? The waves associated with moving material particle are matter waves.	1
2	What do you mean by diffraction of light? The bending of light around the edges of small obstacles and enter the region where we would expect a shadow is called diffraction of light.	1
3	Mention the unit of electric dipole moment. coulomb metre (Cm).	1
4	The susceptibility of a magnetic material is 89 . What is its relative permeability? $90\left(\mu_{r}=1+\chi=1+89=90\right)$	1
5	What is the wavelength range of visible light? 700 nm to 400 nm	1
6	Represent unpolarized light with a ray diagram.	1
7	Write the loaic symbol of AND gate.	1
8	What is an intrinsic semiconductor? A pure form of semiconductor is called intrinsic semiconductor.	1
9	What is the source of stellar energy? Thermonuclear fusion is the source of energy output in the interior of stars.	1
10	Which magnetic material will exhibit hysteresis property? Ferromagnetic materials	1
II. 11	What is a polaroid? Write one use. A polaroid is a thin plastic like sheet consists of long chain molecules aligned in a particular direction. Use: i. To control intensity in sunglasses, ii. Control intensity in window panes, ii. Used in photographic camera, iv. Used in 3D movie cameras. (ANY ONE)	1 1
12	Write Einstein's equation for photoelectric effect and explain the terms involved. Maximum kinetic energy, $K_{\max }=h v-\Phi_{o}$ h - Plank's constant, v - frequency of radiation, Φ_{o} - work function.	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
13	Write the expression for radius of a circle when a charged particle moves perpendicular to magnetic field. Explain the terms. Radius of the circular path, $r=\frac{m v}{q B}$, m - mass of the charged particle and v - velocity of the charged particle, q charge of the particle, B - magnetic field.	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
14	Define a) Magnetic declination, b) Magnetic inclination. Magnetic declination (D) at the place is the angle between true geographic north direction and the north shown by the magnetic compass needle. Magnetic inclination (I) at a place is the angle between the earth's total magnetic field at a place and horizontal drawn in magnetic meridian.	1 1

\begin{tabular}{|c|c|c|}
\hline 15 \& Draw the ray diagram of image formation in the case of simple microscope. \& 1
1 \\
\hline 16. \& \begin{tabular}{l}
Name two electron emission processes. \\
i. Thermionic emission, ii. Field emission, iii. Photo - electric emission (Any TWO)
\end{tabular} \& 1 each \\
\hline 17 \& \begin{tabular}{l}
State and explain Faraday's law of electromagnetic induction. \\
The magnitude of the induced emf in a circuit is equal to the time rate of change of magnetic flux through the circuit. \\
Let \(d \emptyset_{B}\) be the changes in magnetic flux in a time interval \(d t\), then magnitude of induced emf, \(|\varepsilon|=\left|\frac{d \varnothing_{B}}{d t}\right|\) \\
If a coil has \(N\) turns then, \(|\varepsilon|=N\left|\frac{d \varnothing_{B}}{d t}\right|\).
\end{tabular} \& 1
1 \\
\hline 18 \& \begin{tabular}{l}
Write the expression for limit of resolution of telescope and explain the terms. \\
Limit of resolution of telescope, \(\Delta \theta \simeq \frac{0.61 \lambda}{a}\), \\
\(\lambda\) - wavelength of light, \(a\) - radius of aperture of the objective of telescope.
\end{tabular} \& \[
\begin{aligned}
\& 1 \\
\& 1 \\
\& \hline
\end{aligned}
\] \\
\hline III. 19 \& \begin{tabular}{l}
State and explain Coulomb's inverse square law in electrostatics. \\
The mutual electrostatic force between two point charges is directly proportional to the product of magnitude of charges and inversely proportional to the square of the distance between the charges and acted along the line joining the two charges. \\
If \(\mathrm{q}_{1}\) and \(\mathrm{q}_{2}\) are two point charges separated by a distance \(r\) in free space, then the magnitude of force between them is given by, \(F \propto \frac{\left|\mathrm{q}_{1} \mathrm{q}_{2}\right|}{\mathrm{r}^{2}}\) OR \(F=\frac{1}{4 \pi \varepsilon_{0}} \frac{\left|\mathrm{q}_{1} \mathrm{q}_{2}\right|}{\mathrm{r}^{2}}\) in free space, where \(\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \mathrm{Nm}^{2} \mathrm{C}^{-2}\) is the constant of proportionality and \(\varepsilon_{0}=8.854 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}\) is the permittivity of free space.
\end{tabular} \& 1

2 \\

\hline 20 \& | Derive the expression for equivalent capacitance when capacitors are connected in parallel. |
| :--- |
| Let capacitors of capacitances C_{1}, C_{2} and C_{3} are connected in parallel as in the diagram. A battery of potential difference V is connected across the capacitors. The capacitors have charges $+Q_{1},-Q_{1}, Q_{2},-Q_{2}, Q_{3}$ and Q_{3} respectively such that $Q_{1}=C_{1} V, Q_{2}=C_{2} V$ and $Q_{3}=$ $C_{3} V$. |
| Let this combination of capacitors be replaced by a single capacitor called effective capacitor of effective capacitance C_{P}. |
| The equivalent capacitor is one with charge, $Q=Q_{1}+$ $Q_{2}+Q_{3}$ and potential difference V. $Q=C_{P} V=C_{1} V+C_{2} V+C_{3} V$ |
| The effective capacitance of combination, $C_{P}=C_{1}+C_{2}+C_{3}$. | \& | 1 |
| :--- |
| (diagram \& explanation) |
| 1 |
| 1 | \\

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline 21 \& \begin{tabular}{l}
Derive the relation, \(\vec{J}=\sigma \vec{E}\) by Ohm's law. \\
Consider a conductor of length \(l\) with area of cross section \(A\) carrying a current \(I\). Let \(V\) be the applied potential difference. \\
According to Ohm's law, \(V=I R\), where \(R\) - resistance of conductor. If \(\rho-\) is the resistivity of material of conductor then \(R=\frac{\rho l}{A}\). \\
Hence \(V=I \frac{\rho l}{A}\) or \(\frac{I}{A}=\frac{V}{\rho l}\) \\
But \(\frac{I}{A}=J\), Current density. Therefore, \(J=\frac{V}{\rho l}\) or \(\overrightarrow{\mathrm{J}}=\sigma \overrightarrow{\mathrm{E}}\). Since \(\frac{V}{l}=E\), electric field and \(\frac{1}{\rho}=\sigma\), conductivity.
\end{tabular} \& 1
1
1 \\
\hline 22 \& \begin{tabular}{l}
Obtain the expression for mechanical force on a current carrying conductor placed in a magnetic field. \\
Consider a conductor of length \(l\) area of cross section \(A\) carrying current \(I\) placed in a uniform magnetic field, \(\vec{B}\). \\
Let \(\overrightarrow{v_{d}}\) be the average drift velocity of the mobile charge carriers. These moving charges in the magnetic field will experience a force is given by,
\[
\begin{aligned}
\& \vec{F}=q\left(\overrightarrow{v_{d}} \times \vec{B}\right)=(n e A l)\left(\overrightarrow{v_{d}} \times \vec{B}\right)=\left(n e A \overrightarrow{\mathrm{v}_{\mathrm{d}}}\right)(l \times \overrightarrow{\mathrm{B}}) \\
\& \mathrm{OR} \overrightarrow{\mathrm{~F}}=\mathrm{I}(\vec{l} \times \overrightarrow{\mathrm{B}})
\end{aligned}
\] \\
Magnitude of force, \(F=I l B \sin \theta\), where \(\theta\) is angle between length of the conductor and magnetic field.
\end{tabular} \& 1
1

1 \\

\hline 23 \& | What is the principle of transformer? Mention two sources of power loss in transformer. |
| :--- |
| Mutual induction. |
| i. Resistance of the windings, ii. Flux leakage, iii. Eddy currents, iv. Hysteresis (Any TWO) | \& \[

$$
\begin{gathered}
1 \\
1 \text { each }
\end{gathered}
$$
\] \\

\hline 24 \& | Derive the expression for energy stored in a coil. |
| :--- |
| A back emf ε is established due to the current I in a solenoid of self inductance L. |
| Power, $P=\frac{\mathrm{dW}}{\mathrm{dt}}=\|\varepsilon\| \mathrm{I}=\mathrm{LI} \frac{\mathrm{dI}}{\mathrm{dt}}$. Since $\|\varepsilon\|=\mathrm{L} \frac{\mathrm{dI}}{\mathrm{dt}}$. |
| Work done, $\mathrm{W}=\int \mathrm{dW}=\int_{0}^{\mathrm{I}} \mathrm{LIdI}=\mathrm{L} \int_{0}^{\mathrm{I}} \mathrm{IdI}=\mathrm{L}\left[\frac{\mathrm{I}^{2}}{2}\right]_{0}^{\mathrm{I}}=\frac{1}{2} \mathrm{LI}^{2}$. |
| This work done is stored as magnetic potential energy. |
| \therefore Magnetic energy stored, $\mathrm{U}_{\mathrm{B}}=\frac{1}{2} \mathrm{LI}^{2}$. | \& 1

1
1
1 \\

\hline 25 \& | Show that, $\mathrm{f}=\frac{R}{2}$ for a spherical mirror. |
| :--- |
| Consider a concave mirror with pole P and centre of curvature C. Consider a parallel ray parallel to the principal axis striking the mirror at M . Let θ be the angle of incidence and MD be the perpendicular from M on the principal axis. |
| $\angle \mathrm{MCD}=\theta \& \angle \mathrm{MFD}=2 \theta ; \tan \theta=\frac{\mathrm{MD}}{\mathrm{CD}}$ and $\tan 2 \theta=\frac{\mathrm{MD}}{\mathrm{FD}}$ |
| Since θ is small, $\tan \theta \simeq \theta$ and $\tan 2 \theta \simeq 2 \theta$. $\frac{\mathrm{MD}}{\mathrm{FD}}=2 \frac{\mathrm{MD}}{\mathrm{CD}} \mathrm{OR} \mathrm{FD}=\frac{\mathrm{CD}}{2}$ |
| Since D is very close to $P, F D \simeq F P=f$ and $C D \simeq C P=R$ |
| Therefore, $\mathrm{f}=\frac{R}{2}$. | \& $\substack{1 \\ \text { (diagram \& } \\ \text { explanation) }}$

1
1
1 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
Applying refraction formula we have, \(\frac{n_{1}}{-u}+\frac{n_{2}}{v_{1}}=\frac{n_{2}-n_{1}}{R_{1}}\) \\
For refraction at the second face ADC, \(I_{1}\) acts as a virtual object at a distance \(v_{1}\) and \(I\) is the image at a distance \(v\) from the pole. \\
Applying refraction formula we have, \(\frac{n_{2}}{-v_{1}}+\frac{n_{1}}{v}=\frac{n_{1}-n_{2}}{R_{2}}=\frac{n_{2}-n_{1}}{-R_{2}}\) \\
Adding (1) and (2), \(\frac{n_{1}}{-u}+\frac{n_{1}}{v}=\left(n_{2}-n_{1}\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)\) \\
Suppose object is at infinity \(u=\infty\) and \(v=f\) \\
Therefore equation (3) becomes, \(\frac{n_{1}}{f}=\left(n_{2}-n_{1}\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)\)
\[
\begin{equation*}
\frac{1}{f}=\left(\frac{n_{2}}{n_{1}}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \text { OR } \frac{1}{f}=\left(n_{21}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \Rightarrow \text { Lens maker's formula. } \tag{4}
\end{equation*}
\]
\end{tabular} \& 1

1
1
1
1 \\

\hline 31 \& | Derive the expression for radius of orbit of electron in the $\mathrm{n}^{\text {th }}$ state of hydrogen atom. |
| :--- |
| Let an electron of mass m, charge $-e$, revolves in a circular stationary $n^{\text {th }}$ orbit of radius r_{n}. Let v_{n} be the linear velocity and charge at the center of the atom is $+e$. |
| Centripetal force $=$ Electrostatic force of attraction $\begin{align*} \frac{m v_{n}^{2}}{r_{n}} & =\frac{1}{4 \pi \varepsilon_{0}} \frac{e^{2}}{r_{n}^{2}} \\ m v_{n}^{2} r_{n} & =\frac{e^{2}}{4 \pi \varepsilon_{0}} \tag{1} \end{align*}$ |
| For stationary orbit, angular momentum $L=\frac{n h}{2 \pi}$ $m v_{n} r_{n}=\frac{n h}{2 \pi}$ \qquad (2) where n - quantum number. $\begin{equation*} \text { Squaring (2) } \quad m^{2} v_{n}^{2} r_{n}^{2}=\frac{n^{2} h^{2}}{4 \pi^{2}} \tag{3} \end{equation*}$ |
| Squaring (2) $(3) /(1) \Rightarrow \quad r_{n}=\frac{n^{2} h^{2} \varepsilon_{0}}{\pi m e^{2}} \text {. }$ | \& 1

1
1
1
1
1 \\

\hline 32 \& | Describe with circuit diagram, the working of full wave rectifier. Show the input and output waveforms. |
| :--- |
| During positive half transformer output, A is positive and B is negative, diode D_{1} is forward biased and D_{2} is reverse biased. Therefore D_{1} conducts and D_{2} does not. Output current is along XY. |
| During negative half cycle A becomes negative and B is positive. Hence D_{2} conducts and D_{1} does not. Output voltage is in the same direction along XY. |
| So current flows through R over complete cycle of AC input and the current is unidirectional. Thus output voltage is unidirectional as shown in the graph. | \& \\

\hline
\end{tabular}

VI. 33	Charges $2 \mu \mathrm{C}, 4 \mu \mathrm{C}$ and $6 \mu \mathrm{C}$ are placed at the three corners A, B and C respectively of a square $A B C D$ of side x metre. Find what charge must be placed at the fourth corner so that the total potential at the centre of the square is zero. $\begin{aligned} & \text { Given } \quad Q_{A}=2 \mu C, Q_{B}=4 \mu C, Q_{C}=6 \mu C, Q_{D}=\text { ? } \\ & A B=B C=C D=C A=x \end{aligned}$ From the figure, distance between the center and the corner, $O A=O B=O C=O D=\frac{\sqrt{2} x}{2}=\frac{x}{\sqrt{2}}$. We have electric potential, $V=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r}$ Potential at centre, $V=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{Q_{A}}{\frac{x}{\sqrt{2}}}+\frac{Q_{B}}{\frac{x}{\sqrt{2}}}+\frac{Q_{C}}{\frac{x}{\sqrt{2}}}+\frac{Q_{D}}{\frac{x}{\sqrt{2}}}\right)=0$ $\begin{aligned} & \text { OR } \frac{\sqrt{2} \times 9 \times 10^{9}}{x}\left(2 \times 10^{-6}+4 \times 10^{-6}+6 \times 10^{-6}+Q_{D}\right)=0 \\ & \Rightarrow 12 \times 10^{-6}+Q_{D}=0 \text { OR } Q_{D}=-12 \times 10^{-6}=-12 \mu \mathrm{C} \end{aligned}$	1 1 1 1 1
34	A current of 0.5 A is passed through a wire of length 15 m and uniform cross section of radius $2 \times 10^{-3} \mathrm{~m}$. If potential difference of 10 V is applied across the ends of the wire, what is the resistivity of the material? Given $I=0.5 \mathrm{~A}, l=15 \mathrm{~m}, r=2 \times 10^{-3} \mathrm{~m}, \mathrm{~V}=10 \mathrm{~V}, \rho=$? We have resistance, $R=\frac{V}{I}$ $=\frac{10}{0.5}=20 \Omega$ Resistivity, $\rho=\frac{R A}{l}=\frac{R\left(\pi r^{2}\right)}{l}$ $\begin{aligned} & =\frac{20 \times 3.14 \times\left(2 \times 10^{-3}\right)^{2}}{15} \\ & =\frac{251.2 \times 10^{-6}}{15}=16.75 \times 10^{-6} \Omega \mathrm{~m} \end{aligned}$	1 1 1 1 1
35	A resistor of 200Ω and a capacitor of $15 \mu \mathrm{~F}$ are connected in series to a $220 \mathrm{~V}, 50 \mathrm{~Hz}$ ac source. Calculate the rms current in the circuit. Calculate the rms voltage across the resistor and the capacitor. Given $R=200 \Omega, C=15 \mu \mathrm{~F}, v_{r m s}=200 \mathrm{~V}, v=50 \mathrm{~Hz}, I_{r m s}=$?, $v_{R}=$?, $v_{C}=$? We have, rms current I the circuit, $I_{r m s}=\frac{v_{r m s}}{\sqrt{R^{2}+\left(\frac{1}{2 \pi v C}\right)^{2}}}$ $=\frac{220}{\sqrt{200^{2}+\left(\frac{1}{2 \times 3.14 \times 50 \times 15 \times 10^{-6}}\right)^{2}}}$ $=\frac{220}{\sqrt{200^{2}+212.13^{2}}}=\frac{220}{291.55}=0.7546 \mathrm{~A}$ rms voltage across resistor, $v_{R}=I_{r m s} R=0.7546 \times 200=150.92 \mathrm{~V}$ rms voltage across capacitor, $v_{C}=I_{r m s} X_{C}=0.7546 \times 212.13=160.07 \mathrm{~V}$	1 1 1 1 1 1

36	In Young's double slit experiment the slits are separated by 0.28 mm and the screen is placed at a distance of 1.4 m away from the slits. The distance between the central bright fringe and the fifth dark fringe is measured to be 1.35 cm . Calculate the wavelength of the light used. Also find the fringe width if the screen is moved towards the slits by 0.4 m , for the same experimental set up. Given $d=0.28 \mathrm{~mm}, D=1.4 \mathrm{~m}, n=4, x_{4}=1.35 \mathrm{~cm}, \lambda=?, D^{\prime}=1 \mathrm{~m}, \beta=$? We have for dark fringe distance, $x_{n}=\frac{\left(n+\frac{1}{2}\right) \lambda D}{d}$ $\Rightarrow 1.35 \times 10^{-2}=\frac{\left(4+\frac{1}{2}\right) \lambda \times 1.4}{0.28 \times 10^{-3}}$ OR $\lambda=\frac{1.35 \times 10^{-2} \times 0.28 \times 10^{-3} \times 2}{1.4 \times 9}=0.06 \times 10^{-5} \mathrm{~m}$ OR 600 nm Fringe width, $\beta=\frac{\lambda D^{\prime}}{d}$ $=\frac{0.06 \times 10^{-5} \times 1}{0.28 \times 10^{-3}}=2.143 \times 10^{-3} \mathrm{~m}$	1 1 1 1 1
37	Half life of $U-238$ undergoing α - decay, is 4.5×10^{9} years. What is the activity of one gram of $\mathbf{U}-238$ sample? Given $T_{1 / 2}=4.5 \times 10^{9}$ years, $R=$? Number of atoms (nuclei) present in 1 g of $\mathrm{U}-238, N=\frac{m N_{A}}{M}=\frac{1 \times 6.023 \times 10^{23}}{238}=$ 2.53×10^{21} nuclei or atoms. Half life, $T_{\frac{1}{2}}=\frac{0.693}{\lambda}$ OR Decay constant, $\lambda=\frac{0.693}{T_{\frac{1}{2}}}$ $\begin{aligned} =\frac{0.693}{4.5 \times 10^{9} \times 3.154 \times 10^{7}} & =\frac{0.693}{14.193 \times 10^{16}} \\ & =0.0488 \times 10^{-16} \mathrm{~s}^{-1} \end{aligned}$ We have activity, $R=\lambda N$ $=0.0488 \times 10^{-16} \times 2.53 \times 10^{21}=1.235 \times 10^{4} s^{-1}$	1 1 1 1 1 1

Note: i) Alternate method should be considered.
ii) Deduct one mark for answers without proper unit in Part D

