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Abstract: In this paper a novel method of de-noising phonocardiogram by 
time-frequency overlapping group shrinkage method is described. In this 
method sigma, the standard deviation of the stationary noise present in a noisy 
phonocardiogram is found using activity detection. This noise is then cancelled 
by attenuating it in the time frequency domain. The accuracy of noise reduction 
is measured by SNR. Overlapping group shrinkage algorithm reduces the effect 
of noise by attenuating them using hard or soft thresholding. Performance of 
this method was found to be far better compared to other methods such as soft 
thresholding and block thresholding. 
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1 Introduction 

Phonocardiogram is a tool used by doctors to look at well-being of any person. Often this 
phonocardiogram is corrupted by noise from the environment. These noises are usually 
buzzing and humming sounds from environment, hospital sounds and other artefacts. 
They hinder the detection of low frequency mild sounds and lead to false detection. So 
enhancement of phonocardiogram along with noise reduction becomes important. 
Preliminary literature survey shows that there exist many noise reduction algorithms for 
phonocardiograms with both merits and demerits. This paper discusses time frequency 
overlapping group shrinkage (OGS) algorithm along with soft thresholding and block 
thresholding method. Section 2 discusses heart sound model. Section 3 discusses 
estimation of heart sound using activity detection. Section 4 discusses the heart sound 
reduction method using overlapping group shrinkage. Section 5 discusses about the 
obtained results. 

2 Heart sound model 

Consider a noisy heart sound signal x It consists of the stationary noise n The noise is  
a random noise with an unknown probability density function (pdf) with zero mean  
(Lee and Hasegawa-Johnson, 1996). Let the short-time Fourier transform STFT of x be 
given by equation (1). 

 
21

0

knL jk N
mX x n mL e

 
   (1) 

If we consider that the STFT coefficients of x  are a weighted sum of samples of  
length  L  of the corresponding random process, then as per central limit theorem,  

as L →∞, the STFT coefficients k
mX  asymptotically have Gaussian pdf with zero mean 

(Lee and Hasegawa-Johnson, 1996). The pdf of the kth frequency bin k
mX  can be 

expressed as shown in equation (2): 
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 (2) 

Thus, the variance of DFT of noise  N k  is equivalent to the MMSE estimation of 

noise power. 
The signal x contains heart sound for which x s n  . Activity detection of 

Phonocardiogram compares the probabilities of presence or absence of heart sound as per 
the hypothesis stated in equation (3). 
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where ,   k k k
m m mS N and X  are K-dimensional STFT vectors of phonocardiogram (PCG), 

noise and noisy PCG, respectively. Pdf of x , given H0 is given by equation (2). Pdf  
of x , given H1 is given by equation (4). 

          
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 (4) 

where   2k
N mk E N     

 and   2k
S mk E S     

 denote variance of PCG and noise 

variance, respectively. 
The likelihood ratio at the kth frequency bin is given by equation (5) as per the 

following (Ramírez 2005): 
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   /k S Nk k    and  2
/k

k m NX k   are defined as priori and posteriori snr, 

respectively. 

3 Estimation of noise in PCG 

In practice, we do not have an infinite length noise sequence. The most common method 
of noise estimation given a finite length noise sequence is periodogram estimation given 
by equation (6) (Lee and Hasegawa-Johnson, 1996). 

  2ˆm k
N mk X    (6) 

where k
mX  is the STFT of noise only signal x  in the mth frame as defined in equation (1). 

We use Bartlett’s theorem to reduce the variance  ˆm
N k  by averaging the M frames. 

   
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   (7) 

This method requires a length LM sequence of noise only observations.  N k  is an 

unbiased and consistent estimator of   :N k E    ]N Nk k    (7) 

E       2 21
N N Nk k k

M
      

  (8) 

However, equations (7) and (8) do not imply that  N k  predicts any particular instance 

of 
2k

mN  with high accuracy: 
2k

mN is exponentially distributed, so its standard deviation 

equals its mean. 
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Considering the PCG presence uncertainty, the MMSE estimate of the noise at the 
kth frequency bin in the mth frame given current noisy observation is mentioned in 
equation (2). 

   

 

2 2

0 0
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 (9) 

Using Bayes rule, 

     
       

0 0

0

0 0 1 1

| 1
|

1 Λ| |

k
mk

m kk k
mm m

p X H p H
p H X

p X H p H p X H p H
 

 
 (10) 

where  =p(H1|H0) and    1 0Λ | | |k k k
m m mp X H p X H  is the likelihood ratio of mth frame 

given in equation (4). Similarly, 
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
 (11) 

If  1 |m k
k mp H X  , then 

  2 22
1 0| (1 ) |ˆm m k m k

N k m k mk E N H E N H             
 (12) 

Sohn and Sung (1998) proposed that, under the hypothesis H0, we can use the current 
noisy observation,  

2 2

0|k k
m mE N H X    

 (13) 

Hypothesis H1, 
2k

mX  contains PCG as well as noise, and is therefore not an accurate 

estimate of the noise power. Assuming that the activity detection of PCG with probability 
m
k  has been correctly estimated in all previous frames, the best available estimate of the 

noise is: 

 2 1
1

ˆ|k m
m NE N H k     

 (14) 

From equation (12)–(14), we have: 

    21 2ˆ ˆ (1 )m m m m k
N k N k mk k X       (15) 

Sohn and Sung (1998) proposed that, if m
k  is an accurate estimate of the PCG presence 

probability in each frame, then equation (15) is an equally accurate estimate of the noise 

power in the mth frame. Under these circumstances,  ˆm
N k takes into account all 

information about the underlying noise process that can be extracted from frames up to 

and including the current frame. The autoregressive noise estimator    
m

N k  proposed in 
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equation (15) is optimal, if and only if the PCG presence probability estimate  m
k is 

accurate. Unfortunately, under low SNR conditions m
k is a random variable with high 

variance. m
k  is a sigmoid transformation of a random variable 

2k
mX  given by: 

 
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

  (16) 

where 
1

.  k
k

k

a





 The input threshold to sigmoid function   log k
k k N

a
a k     

 
 is 

obtained by finding the value of 
2k

mX  at 0.5.m
k   In noise only frames, where 

2
,k

m kN   the value of 1m
k   indicates a false positive even in the absence of PCG. 

Therefore, autoregressive estimator underestimates noise and overestimates PCG in any 
given frame. To solve this problem m

k is modelled as binary random variable-a unit step 

function of 
2k

mN . Let us define ρ= P ( 0.5). m
k   The parameter evaluates to: 

log

k

k
k

a
t k

a
a

a
e dt




 
 
 

    
 




  (17) 

The expected value of autoregressive estimator approximates to:  

E (       1ˆ ( 1ˆ)m m
N N Nk k k log           (18) 

In high noise PCG, there is noise propagation error as seen in equation (16). If the noise 
process is known to be stationary, and if the first M frames of the signal are known to 

contain no PCG, then an a priori periodogram estimate  N k  of E 
2k

mN 
  

with known 

standard error maybe computed using equation (6). If we assume that intervening frames 

provide no further information about E 
2k

mN 
  

, then 

E [  2

1| ]k
m NN H k  (19) 

      2
1ˆm m m k

N k N k mk k X       (20) 

This method does not propagate error. Instead, a false-positive frame is treated just like 
any other frame about which we have no certain knowledge of the noise spectrum: the 
noise estimate is backed off to the a priori noise estimator  N k  (Donoho 1995). The 

present noise spectrum estimation method can be interpreted as a posteriori MMSE 
estimate of the noise power in the current frame, when the noise process is stationary but 
with high variance. 
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4 Time frequency overlapping group shrinkage algorithm 

In recent years, many algorithms based on sparsity have been developed for signal de-
noising. These algorithms often utilise nonlinear scalar shrinkage/thresholding functions 
of various forms which have been devised so as to obtain sparse representations. 
Examples of such functions are the hard and soft thresholding functions (Donoho 1995), 
and the nonnegative garrotte (Figueiredo and Nowak, 2001; Gao, 1998). Numerous other 
scalar shrinkage/thresholding functions have been derived as MAP or MMSE estimators 
using various probability models (Fadili and Boubchir, 2005; Hyvvarinen, 1999;  
Mallat, 1979). 

For the purpose of de-noising, the regularisation parameter λ is chosen analogous to 
the ‘three-sigma’ rule. The method allows for λ to be selected so as to ensure that the 
noise variance is reduced to a specified fraction of its original value. This method does 
not aim to minimise the mean square error or any other measure involving the signal to 
be estimated, and is thusnon-Bayesian (Chen and Selesnick, 2010). Let y be the standard 
deviation of the Gaussian noise in the PCG. Then, y ~ N (0,1) and let us define  
x = soft (y, T). Then the variance of x as a function of threshold T is given by: 

         
2

22 2 2 2
2

2 1
T

x y

y T

T E x y T p y dy T Q T T e






          (21) 

where  yp y  is the standard normal pdf N (0,1) and  
2

2
1

2

t

T

Q T e dt


 

   

0.5 1 erf
2

T     
  

 (Chen and Selesnick, 2010). Figure 1 shows that standard deviation 

σx(t) is a function of threshold T. Soft thresholding uses 3σ rule to attenuate noise. The 
‘3σ rule’ states that nearly all values of a Gaussian random variable lie within three 
standard deviations of the mean (in fact, 99.7%). Since the variance of x is unity here, the 
3σ rule suggests setting the threshold to T = 3 which leads to σx(3) = 0.020. The graph in 
Figure 1 generalises the 3σ rule: Given a specified output standard deviation σx, the graph 
shows how to set the threshold T in the soft threshold function so as to achieve it, i.e., so 
that E[soft(y, T)2] = 2

x  where y ~ N(0, 1). For example, to reduce the noise standard 

deviation σ to one percent of its value, we solve σx(T) = 0.01 for T to obtain  
T = 3.36σ. This threshold is greater than that suggested by the 3σ rule. OGS provides the 
alternate solution for this type of problem. In OGS we set the regularisation parameter λ 
as the threshold for PCG detection in the presence of noise. However, for OGS there is 
no explicit formula such as equation (21) relating λ to σx. Indeed, in the overlapping 
group case (Chen and Selesnick, 2010), neither is it possible to reduce E[x2] to a 
univariate integral as in equation (21) due to the coupling among the components of y, 
nor is there an explicit formula for x in terms of y, but only a numerical algorithm. 
Although no explicit analogue of equation (21) is available for OGS, the functional 
relationship can be found numerically. Let y be i.i.d. N(0,1) and define x as the output of 
the OGS algorithm: x = ogs(y; λ, K). The output standard deviation σx can be found by 
simulation as a function of λ for a fixed group size. For example, consider applying the 
OGS algorithm to a two-dimensional array y using a group size of 3 × 3. For this group 
size, σx as a function of λ is illustrated in Figure 2. The graph is obtained by generating a 
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large two-dimensional array of i.i.d. standard normal random variables, applying the 
OGS algorithm for a discrete set of λ, and then computing the standard deviation of the 
result for each λ. Once this graph is numerically obtained, it provides a straight forward 
way to set λ so as to reduce the noise to a specified level. For example, to reduce the 
noise standard deviation λ down to one percent of its value, we should use λ = 0.43σ in 
the OGS algorithm according to the graph in Figure 2. It can be observed in Figure 1  
that the function σx(.) has a sharper ‘knee’ in the case of OGS compared with soft 
thresholding. Graphs for numerous group sizes show that in general the larger the group, 
the sharper is the knee. Note that in practice λ should be chosen large enough to reduce 
the noise to a sufficiently negligible level, yet no larger so as to avoid unnecessary signal 
distortion. That is, suitable values of λ are somewhat near the knee. Therefore, due to the 
sharper knee, the de-noising process is more sensitive to λ for larger group sizes; hence, 
the choice of λ is more critical. Similarly, it can be observed in Figure 1 that for OGS, the 
function σx(λ) follows a linear approximation more closely to the left of the ‘knee’ than it 
does in the case of soft thresholding. Near the origin, σx(λ) is approximated by 

 

1
Γ

2 2
2 , 0

Γ
2

x



   


 
 

     (22) 

where   is the cardinality of the group (K in 1D, K1K2 in 2D) matters. = {(j1; j2):  

0 <= j1 <= K1<=1; 0 <= j2 <=K2 <=1}. This can be explained by noting that for  
y ~ N(0, σ2), the l2 norm of the group follows a chi-distribution with   degrees (Chen 

and Selesnick, 2010) of freedom, the mean of which is the slope in equation (31).  
For small λ, OGS has roughly the effect of soft thresholding the l2 norm of the groups 
(Chen and Selesnick, 2010). 

Figure 1 Standard deviation vs. threshold 
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Figure 2  Overlapping group shrinkage (OGS) with group size 3 × 3 

 

The preceding sections described how the parameter λ may be chosen so as to reduce 
additive white Gaussian noise to a desired level. However, in many cases the noise is not 
white. For example, in the PCG de-noising example where the OGS algorithm is applied 
directly in the STFT domain. However, the STFT is an over-complete transform; 
therefore, the noise in the STFT domain will not be white, even if it is white in the 
original signal domain. In the PCG de-noising the noise is more highly correlated, the 
values of λ will be somewhat inaccurate. 

The penalty function in equation (22) is suitable for stationary noise; however, in 
many applications, noise is not stationary. For example, in the problem of de-noising 
PCG corrupted by stationary coloured noise, the Variance of the noise in the STFT 
domain will vary as a function of frequency. In particular, some noise components may 
be narrowband and therefore occupy a narrow time-frequency region. The OGS penalty 
function and algorithm, as described in this paper, do not apply to this problem directly. 
The penalty function in equation (4) and the process to select λ must be appropriately 
modified. The OGS algorithm as described above uses the same block size over the entire 
signal. In some applications, it may be more appropriate that the block size varies. For 
example, in PCG de-noising, as noted and developed, it is beneficial that the block size in 
the STFT domain varies as a function of frequency (e.g., for higher temporal resolution at 
higher frequency). This problem is solved using Block thresholding algorithm. 

5 Time frequency block thresholding algorithm 

A time frequency block estimator regularises the power subtraction by calculating a 
single attenuation factor. The time frequency plane is divided into I blocks Bi with 

arbitrary shape. For each Bi a single estimator f̂  is calculated with constant attenuation  
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ia  for the noisy signal.The noise characteristics are changed during the passage from 

time field to time-frequency field. It is still Gaussian (for all frequencies, the noise 
follows a centred normal law) but σ2 changes. Consider the discrete Fourier transform of 
the windowed noise. The Fourier coefficients of the noise is given by:  

1 2
expˆk n n

n

i kn
w

WW

     
 

  (23) 

Var(   21 2
) exp 0.3 5ˆ 7k n

n

i kn
var w n

W W

        
  (24) 

The coefficients matrix is partitioned into macro-blocks and as the signal is real. This 
matrix has a symmetry between negative and positive frequencies thus it is enough to 
only treat the negative frequencies. The frequency 0 is treated separately. For the  
zero frequencies, we treat the points from the beginning to the end eight by eight  

(blocks 1 × 8): attenuation coefficient ai is 
1

1
1i

i

a


 


 with 
2

2
i

i
i

Y


 .Where 2
iY is the 

empirical mean on the block i. The real λ is a parameter depending on the block size. The 
real λ controls the variance term which is due to the noise variation. It is computed with 

the following expression:  2 2  .P     In this expression,   is a parameter such as, 

with   = 10–3, musical noises are barely audible. The blocks inside macro-blocks are 
rectangles. Their sizes are Li X Wi where Li and Wi are, respectively, the length in time 
and the block width in frequency. The smallest rectangle has the size 1 × 2, 1 in 
frequency and 2 in times. With k = 1 (the redundancy factor), 2  is following a 2  

distribution with the size of the block as degree of freedom. Due to discretisation effects, 
λ takes roughly the same values for Wi = 1 and Wi =2. So, to compute λ for  
Wi = 1, we are doing the same as if Wi = 2.The following matrix gives the computed 
values of λ for different size of blocks (computed thanks to Table 1): 

M =

1.5 1.8 2 2.5 2.5

  1 .8 2 1.5 3.5 3.5

2 2.5 3.54.7 4.7

 

Table 1 Lambda vs. block size 

#
iB  4 8 16 32 64 128 

λ 4.7 3.5 2.5 2.0 1.8 1.5 

Even if an upper bound of the risk can be found, then it cannot be computed while the 
signal f is unknown. That is why we use an estimator of the risk which is found with the 
SURE theorem. This theorem is used to find the best block shapes into a macro-block by 
minimising this estimated risk. This is the SURE (Stein Unbiased Risk Estimate) 
theorem: Let Y be the noisy signal. It’s a normal random vector with the identity as  
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covariance matrix and of expectation F, which is the signal searched, without noise. So, 
Y = F + ε, where ε ~ N (0, Ip). F is estimated by Y + h (Y), where h is differentiable as  

h: Rp → Rp and 
1

.
p

j

j j

h
h

y


 

 . Assuming  

 

       

2

1

2 2

2

,

2 ˆ. 2

p
j

j j

h
E R E Y h Y F

y

p E h Y h Y R p h Y h Y



 
          

         


 (25) 

R̂  is an unbiased estimator of the risk R of Y + h(Y). We know that Yi+h(Yi) = aiYi is an 
estimator of F. Therefore, the kth-block risk is: 

         2 2
, , , , ,k kR E F i j a F i j E F i j Y i j hY i j         

   
 (26) 

Finally, the blocks are chosen to minimise ˆ
kR .A macroblock is 8 points in time 

(horizontally) and 16 points in frequency (vertically). The beginning is time 1 and 
frequency –1. Each macroblock is treated independently. 15 different subdivisions are 
tested and the best is kept. For a block, the risk can be computed by the following 
formula 

 
2 2

2 # #

2 # #
2 2

1ˆ 2 1
k k

k k kY Y

B B Y
R B B

Y  

 





 

 
        

  
 

 (27) 

This formula gives the estimation of the risk of the block i of size #
iB . It is obtained 

using the SURE theorem with: #
ip B , h(Yi) = (ai –1) Yi. For a given subdivision, the 

estimation of the risk of the macro-block, is the sum of the risk estimations of each block 
of the subdivision. All the 15 subdivisions are tested. The one with the minimal risk 
estimation is chosen. The attenuation coefficients are computed in the same way as for 
the zero frequency (equation (1)). For the last blocks, which are not full in frequency, all 
the coefficients of each block are treated together like for the zero frequency. For the last 
few coefficients that do not make up a block, do hard thresholding. For positive 
frequencies, conjugate from the negative frequencies. 

6 Results and discussion 

The experiments presented below have been performed on various types of PCG signals 
obtained from Peter Bentley’s PCG database (http://www.peterjbentley.com/ 
heartchallenge/). The sounds are wav files sampled at 44.1 kHz. They were corrupted by 
Gaussian noise of different amplitude. For each sound, de-noising with maximum noise 
removal were applied. The noise power was estimated using activity detection (Lee and 
Hasegawa-Johnson, 1996). The database is a mixture of normal and abnormal PCG along 
with clicks and murmurs. Three methods were used for comparison namely soft 
thresholding (ST) (Chen and Selesnick, 2010; Donoho, 1995), Overlapping group 
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shrinkage (OGS) (Chen and Selesnick, 2010) and Block Thresholding (BT) (Yu and 
Mallat 2008). Figure 3 shows a noisy heart sound 201108222231 from the database 
(http://www.peterjbentley.com/heartchallenge/). Figure 3 illustrates the STFT of the 
above sound calculated with 50% overlapping blocks of length of 512 samples. A well-
known problem arising in many audio enhancement algorithms is that the residual noise 
is audible as ‘musical noise’ (Boll 1979, Berouti et al. 1979). Musical noise may be 
attributed to isolated noise peaks in the time-frequency domain that remain after 
processing. Figure 4 illustrates the STFT obtained by soft thresholding the noisy STFT, 
with threshold T. T is selected such that as the noise standard deviation reduces down to 
0.1% of its value. T = 3.26σ, where σ is the noise standard deviation of the noise in the 
STFT domain. The noise is sufficiently suppressed and the musical noise is clearly 
inaudible; however, the signal is distorted due to the relatively high threshold that is 
used. This is evident from sSNR of 3.07 dB and SNR of 10.91 dB from Tables 2 and 3. 
The spectrogram in Figure 4 is overly thinned. Methods to reduce musical noise includes 
over estimating the noise variance, imposing a minimum spectral noise floor  
(Ghael 1997), and improving the estimation of model parameters (Mallat, 1979). To 
avoid isolated spurious time-frequency noise spikes (to avoid musical noise), the 
grouping/clustering behaviour of STFT coefficients of PCG waveforms can be taken into 
account. To this end, a recent algorithm by Yu et al. for speech/audio enhancement 
consists of time-frequency block thresholding. We note that the algorithm (Martin 2012) 
is based on non-overlapping blocks. Similar to it (Martin 2012), the OGS algorithm aims 
to draw on the grouping behaviour of STFT coefficients so as to improve the overall de-
noising result, but it uses a model based on fully overlapping blocks. Figure 6 illustrates 
the result of block thresholding (Yu and Mallat 2008) using the software provided by the 
authors. It can be seen that block thresholding (BT) produces blocking artefacts in the 
spectrogram. Figure 5 illustrates the result of Overlapping Group Shrinkage (OGS) 
applied to the noisy STFT. 25 iterations of the OGS algorithm were used. Based on 
listening to HS audio signals de-noised with various group sizes, a group size 8 × 2  
(i.e., eight frequency bins, two time bins) was chosen. Other group sizes may be more 
appropriate for other sampling rates and STFT block lengths. As in the soft thresholding 
experiment, the parameter λ was selected so as to reduce the noise standard deviation 
down to 0.1% of its value. Regularisation parameter λ was fixed as per λ = 0.32σ.While 
the sSNR 3.9 dB and SNR 11.9 dB is lower than block thresholding (sSNR 11.81 and 
SNR 18.63), the artefacts of the OGS de-noised PCG are less audible and musical noise 
is not audible. This was clearly evident from Figure 5 (OGS) and 6 (BT). It was found in 
Ghael (1997) that empirical Wiener post-processing (EWP), introduced in Chen and 
Selesnick (2010) improves the result of the block thresholding (BT) algorithm. This post-
processing, which is computationally very simple, improves the result of OGS by an even 
greater degree than for BT, as measured by SNR improvement. The Wiener post-
processing raises the SNR for BT from 18.63dB to 20dB, (Figure 8) while it raises the 
SNR for OGS from11.9 dB to 16.9 dB (Figure 7). Hence, the two methods give almost 
the same SNR after Wiener post-processing. The substantial SNR improvement in the 
case of OGS can be explained as follows: the OGS algorithm has the effect of slightly 
shrinking (attenuating) large coefficients which produces a bias and negatively affects  
the SNR of the de-noised signal. The Wiener post-processing procedure largely corrects 
that bias. It has the effect of rescaling (slightly amplifying) the large coefficients 
appropriately. 
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Figure 3  Noisy heart sound signal 201108222231 with STFT 

 

Figure 4 Soft thresholded HS with STFT 

 

Figure 5 Overlapping Group Shrinkage HS with STFT 
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Figure 6 Block thresholded HS with STFT 

 

Figure 7 Wiener filtered OGS HS with STFT 

 

Figure 8 Wiener Filtered BT HS with STFT 

 

 



   

 

   

   
 

   

   

 

   

   14 M.V. Shervegar and G.V. Bhat    
 

    
 
 

   

   
 

   

   

 

   

       
 

Table 2 SNR of sounds for different methods 

Sounds & SNR 
(dB) 

ST (OGS-no  
wiener filtering)

(OGS-wiener 
filtering) 

(BT-no  
wiener filtering)

(BT-wiener  
filtering) 

201108222231
(–4.24) 10.91 11.9 16.19 18.63 20.0 

201108222232
(–9.58) 

6.25 7.01 10.43 13.8 15.22 

201108222242
(–9.91) 

6.15 7.47 12.5 15.39 17.29 

201108222257
(–10.33) 7.97 8.21 10.76 13.47 14.75 

201108222258
(–3.08) 

11.44 11.87 15.96 19.72 21.62 

201108222243
(5.12) 

17.3 19.78 27.63 18.59 18.68 

201108222256
(–14.91) 6.48 6.58 8.49 11.56 12.55 

Table 3 SNR of sounds for different methods 

Sounds & sSNR 
(dB) 

ST (OGS-no wiener 
filtering) 

(OGS-wiener 
filtering) 

(BT-no wiener 
filtering) 

(BT-wiener 
filtering) 

201108222231 
(–8.81) 3.07 3.5 7.36 11.81 12.93 

201108222232 
(–9.61) 

1.73 2.11 4.6 7.51 8.63 

201108222242 
(–9.62) 

1.93 2.45 5.57 7.9 9.22 

201108222257 
(–9.66) 1.1 1.16 2.45 4.48 5.33 

201108222258 
(–8.89) 

3.46 3.7 8.27 11.93 13.72 

201108222243 
(–4.56) 

11.73 13.66 26.64 27.31 29.68 

201108222256 
(–9.87) 0.47 0.48 1.04 1.86 2.27 

7 Implications 

Phonocardiography is a practice of acquiring, analysing and interpreting the various 
characteristics and features in heart sound. Often this sound happens to get corrupted 
with background noise. Today’s technology supports various noise filtering techniques 
that is adopted to remove the redundant noise. With the evolution of digital stethoscope 
this procedure has got eased out. The various methodologies include adaptive filtering 
(Mandal et al. 2010), wavelet de-noising, soft thresholding and overlapping group 
shrinkage method, short term Fourier transform (Djebbari and Reguig 2000). This paper 
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discusses about time frequency block thresholding method to remove the redundant 
musical noise that usually appears in other methods. Block thresholding method uses 
non-diagonal processing methods to remove such noises. At the same time, it improves 
the SNR of the sounds adequately. 

This method has a lot of implication to theory and practice. It will be very helpful for 
doctors to understand the effect of noise on heart sounds while practising cardiac 
auscultation (Mandal et al. 2010), foetal phonocardiography (Mithra et al. 2007, Mitra  
et al.2010, Chourasia 2012) and bed-side phonocardiography. Cardiac auscultation deals 
with hearing of fainter and milder as well as high pitched heart sounds. Doctors can now 
clearly hear murmurs, clicks, snaps and other heart sounds with clarity even amidst the 
presence of noise. In foetal phonocardiography it will help the doctors to easily 
distinguish the heart sound of the mother and the baby in the womb. This method will 
help the doctors to perform real-time monitoring of patients present in the ICU. With the 
advancement of technology, the method of phonocardiography has gone wireless 
(Fariborzi and Moghavvemi 2009) and the procedure of noise filtering has become 
robust. There are many methods in the fray, block thresholding is one such method. 
Block thresholding method could also aid teaching of cardiac auscultation in hospitals.  
It will help train doctors about the usage of various methods involved in auscultation  
and phonocardiography. De-noising by block thresholding method is a precursor to  
many signal processing methods (Kaur and Singh 2015) such as segmentation and 
classification. Preliminary literature survey shows that de-noising has improved 
segmentation accuracies in case of methods in (Wang et al. 2005, Rendón 2013). Block 
thresholding will improve their results further. Block thresholding method can also be 
used in analysis and synthesis (Zhang et al 1998) of phonocardiogram signal. 

The present method of Block thresholding method has some limitations. Block 
thresholding method uses block sizes of rectangular shapes for the purpose of de-noising. 
This does not remove 100% noises. In future, the rectangular shapes can be replaced with 
different other shapes so that the method becomes more effective and can contain noise 
better. This paper includes heart sounds taken from Peter Bentley’s database. However, 
the method can be tested under real time hospital conditions. This will give a better birds’ 
eye view about robustness of the described method. Also by incorporating the method in 
a digital stethoscope the method can be automated to give instantaneous and accurate 
results. 

8 Conclusion 

From the above work it is clear that both the methods Block thresholding algorithm  
(Yu and Mallat 2008) and OGS algorithm produces de-noised signal with high SNR and 
sSNR. It is very evident that the so called time frequency structures namely musical noise 
rarely reoccur in BT and OGS methods. In case of BT algorithm, the SNR and sSNR are 
quite higher and the sounds are much louder with no artefacts as compared to OGS 
algorithm. Hence, OGS algorithm is the recommended method for de-noising PCG 
signals especially in hospitals where background noise is a major hindrance in sound 
acquisition. 
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