Pairwise DaO - Connectedness in bitopological spaces

Deepak Shetty M Assistant Professor, Department of Mathematics MIT Kundapur, Karnataka State Email Id: deepak14_shetty@yahoo.com

Dr.P.Padma

[#]PG and Research Department of Mathematics, Idhaya College For Women, Kumbakonam, INDIA <u>padmaprithivirajan@gmail.com</u>

Abstract — O.R.Sayed, A.M.Khalil [23] introduced the notion of $D\alpha$ - closed sets in topological spaces in 2015. The aim of this paper is to introduce the notion of pairwise $D\alpha O$ - connected spaces and pairwise $D\alpha O$ - disconnected spaces.

Keywords — $D\alpha$ - closed, $D\alpha$ - open, pairwise $D\alpha O$ - connected spaces and pairwise $D\alpha O$ - disconnected spaces.

I. INTRODUCTION

Pervin [15] was first to define connectedness and components in a bitopological spaces, whereas the concept of quasi components in bitopological spaces was introduced by Reilly and Young [25]. The generalized closed set has been first studied and initiated by N.Levine in the year 1970 [19]. This generalized closed set has lead to significant contributions to generalization of continuity. Bhattacharya and Lahiri [4] introduced a closed set namely sg - closed set. Further Arya and Nour [1] defined generalized semi open sets ie) gs - open using semi open sets. Further Elvina Mary L and R.Myvizhi [13] has worked on gs^* - closed set. Recently, the notions of pairwise S*GO - connected spaces were introduced by K.Kannan [17] in bitopological spaces in 2009. In the year 2018, gs** - closed sets were introduced by D. Narasimhan and R.Subhaa [20].

Topology and Real Analysis is the study of variously modified forms of continuity, separation axioms, etc. by utilizing generalized open sets. One of the most well-known notions and also inspiration source are the notion of α -open [1] sets introduced by Njåstad in 1965. Since then, many mathematicians turned their attention to the generalization of various concepts in General Topology by considering α -open sets ([3], [22]) and generalized closed sets [2,10].In 1982 Dunham [14] used the generalized closed sets to define a new closure operator, and thus a new topology τ^* , on the space, and examined some of the properties of this new topology.

In this section, the new type of connected and disconnected spaces called pairwise $D\alpha O$ - connected spaces, pairwise $D\alpha O$ - disconnected spaces are introduced.

II. PRELIMINARIES

Let (X, τ) or simply X denotes a topological space. For any subset $A \subseteq X$, the interior of A is the largest open set contained in A and the closure of A is the smallest closed set containing A and they are denoted by *int* (A) and *cl* (A) respectively.

Definition 2.1 A subset A of a topological space (X, τ) is called *a semi - open set* if $A \subseteq cl [int(A)]$.

Definition 2.2 A subset A of a topological space (X, τ) is called a

- a. generalized closed set (g closed set) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- b. gs closed set (g closed set) if scl (A) $\subseteq U$ whenever $A \subseteq U$ and U is open in X.
- c. gs^* closed set if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is gs open in X.
- d. gs^{**} closed set if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is gs^* open in X.
- e. D α closed set [23] if cl*(int(cl*(A))) \subseteq A.

Definition 2.3 The intersection of all g - closed sets containing A [7] is called the g - closure of A and denoted by $cl^*(A)$, The union of all g – open sets contained in A [8] is called the g - interior of A and denoted by $int^*(A)$.

III. PAIRWISE $D\alpha O$ - CONNECTED SPACES

Let (X, τ_1, τ_2) or simply X denotes a bitopological space. For any subset $A \subseteq X, \tau_1 - D\alpha - int(A), \tau_1 - D\alpha - cl(A)$ denote $D\alpha - interior$, $D\alpha - closure$ of a set A in X with respect to the topology τ_1 , respectively. O.R.Sayed, A.M.Khalil [23] introduced the notion of $D\alpha$ - closed sets in topological spaces in 2015. In this section, the new type of connected and disconnected spaces called pairwise $D\alpha O$ - connected spaces, pairwise $D\alpha O$ - disconnected spaces are introduced.

Definition 3.1. Let (X, τ_1, τ_2) be a bitopological space. Then (X, τ_1, τ_2) is said to be pairwise $D\alpha O$ - connected if X cannot be expressed as the union of 2 non empty disjoint sets A and B such that $(A \cap \tau_1 - D\alpha - cl(B)) \cup (\tau_2 - D\alpha - cl(A) \cap B) = \phi$... (1). If (1) is satisfied, we call A and B as pairwise $D\alpha$ - separated sets. If $X = A \cup B$, where A, B satisfy (1), then X is called a pairwise $D\alpha O$ - disconnected space. In this case, we write X = A / B a pairwise $D\alpha O$ - separation of X.

Example 3.1. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{a\}, \{a, b\}\}$ and $\tau_2 = \{\phi, X, \{a, b\}\}$. Then $X = \{b, c\} \cup \{a\}$ and $\{b, c\} \cap \{a\} = \phi$. Here $\{b, c\}$ and $\{a\}$ are $\tau_1 - D\alpha$ - open and $\tau_2 - D\alpha$ - open sets respectively. Therefore, (X, τ_1, τ_2) is pairwise $D\alpha O$ - disconnected space.

Example 3.2. Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}\}$ and $\tau_2 = \{\phi, X, \{c\}, \{b, c\}\}$. Let $G = \{a, c\}$ and $H = \{c\}$. Then $X \neq G \cup H$, where G is τ_1 - D α - open and H is τ_2 - D α - open, $G \cap H \neq \phi$. Hence (X, τ_1, τ_2) is pairwise D α O - connected.

Theorem 3.1. If C is a pairwise $D\alpha O$ - connected subset of a bitopological space (X, τ_1, τ_2) which has the pairwise $D\alpha O$ - separation X = A/B then $C \subset A$ or $C \subset B$.

Proof. Suppose that (X, τ_l, τ_2) has the pairwise $D\alpha O$ - separation X = A / B. Then $X = A \cup B$, where A and B are nonempty disjoint sets such that $A \cap (\tau_l - D\alpha - cl(B)) \cup (\tau_2 - D\alpha - cl(A) \cap B) = \phi \dots$ (1). Since $A \cap B = \phi$, we have $A = B^c$ and $B = A^c \dots$ (2). Now, $((C \cap A) \cap \tau_l - D\alpha - cl(C \cap B)) \cup (\tau_2 - D\alpha - cl(C \cap A) \cap (C \cap B)) \subseteq A \cap \tau_l - D\alpha - cl(B)) \cup (\tau_2 - D\alpha - cl(A) \cap B) = \phi$ $[by (1)] \Rightarrow C \cap A = \phi \text{ or } C \cap B = \phi \Rightarrow C \subset A^c (or) C \subset B^c \Rightarrow C \subset B (or) C \subset A [by (2)].$

Theorem 3.2. If A is a pairwise $D\alpha O$ - connected and $A \subseteq B \subseteq \tau_1 - D\alpha - cl(A) \cap \tau_2 - D\alpha - cl(A)$ then B is pairwise $D\alpha O$ - connected.

Proof. Suppose that B is not pairwise $D\alpha O$ - connected. Then $B = C \cup D$, where C and D are 2 non empty disjoint sets such that $(C \cap \tau_1 - D\alpha - cl(D)) \cup (\tau_2 - D\alpha - cl(C) \cap D) = \phi$. Since A is pairwise $D\alpha O$ - connected, we have $A \subseteq C$ or $A \subseteq D$. Suppose $A \subseteq C$. Then $D \subseteq D \cap B \subseteq D \cap \tau_2$ - $D\alpha - cl(A) \subseteq D \cap \tau_2$ - $D\alpha - cl(C) = \phi$. Therefore, $\phi \subseteq D \subseteq \phi$. Consequently, $D = \phi$. Similarly, we can prove $C = \phi$ if $A \subseteq D$ {by theorem 3.1}. This is the contradiction to the fact that C and D are nonempty. Therefore, B is pairwise $D\alpha O$ - connected.

Theorem 3.3. Let (X, τ_1, τ_2) be a bitopological space. If every 2 points of X are contained in some pairwise $D\alpha O$ - connected space of X then X is pairwise $D\alpha O$ - connected.

Proof. Assume that X is not pairwise $D\alpha O$ - connected. Then X = A/B. $\Rightarrow X = A \cup B$, where A is $\tau_1 - D\alpha$ - open and $\tau_2 - D\alpha$ - open set with $A \cap B = \phi$. Let $x \in A$ and $y \in B$. By hypothesis, there exists a pairwise $D\alpha$ - connected subset C of X such that $x \in C$ and $y \in C$, by the above theorem 3.2, $C \subset A$ or $C \subset B$. $\Rightarrow x, y \in A$ or $x, y \in B$, a contradiction. Hence X is pairwise $D\alpha$ - connected.

IV.CONCLUSION

In this paper, the concept of pairwise $D\alpha O$ - connected and pairwise $D\alpha O$ - disconnected spaces are introduced and some of **its**characterizations are studied.

REFERENCES

- [1] S.P.Arya and T. Nour, Characterizations of S normal spaces, Indian J. Pure. App. Math, 21 717-719(1990).
- [2] P.Agashe, N.Levine ,Adjacent TopologiesJ.Matth. Tokushima Univ. 1973, 7,21 35.
- [3] And erijevic, D., Some properties of the topology of α sets, Math. Vesnik, 36, 1 10 (1984).
- [4] P.Bhattacharya, and B.K.Lahiri, Semi generalized closed sets in topology, Izndian J.Math, 29(3) 1987, 375 382.
- [5] T.Birsan, Surleses spaces bitopologiquesconnexes, An. Sti. Univ. Al. I. Cuza, Isai. Sect. I.t. XIV, fase, 2 (1986), 293-96.

- [6] S.Bose, Semi open sets, semi continuity and semi open mappings in bitopological spaces, Bull. Cal. Math. Soc., 73 (1981), 237-46.
- [7] N. Bourbaki, General topology, Part I, Addison Wesley, Reading, Mass., 1966.
- [8] P.Das, Note on semi connectedness, Indian J. of Mechanics and Mathematics, 12 (1974), 31-35.
- [9] W.Dunham, A new closure operaor for non T_1 topologies, Kyungpook Math J. 1982, 22,55 63.
- [10] W.Dunhamand Levine, Further results on generalized closed sets in topology, Kyungpook Math J. 1980,20,1969-75.
- [11] A.Robert and S.P.Missier, On Semi* closed sets , Asian Journal Engine .Maths 2012, 4, :173 6.
- [12] C.Dursett, Semi connectedness, Indian J of Mechanics and Mathematics, 17 (1979), 57-61.
- [13] Elvina Mary L and R.Myvizhi, gs* closed sets in topological spaces, International Journal of Math Trends and Technology, 72(2014).
- [14] Ivan L. Reily, On pairwise connected bitopological spaces, Kyungpook Math. J., 11(1971), 25 28.
- [15] I.L.Reilly and S.N.Youngs, "Quasi components in bitopological spaces", Math. Chronicle, 3 (1974),115 118.
- [16] R.James Munkres, Topology : A First -Course, Prentice Hall of India, New Delhi, (2001).
- [17] K.Kannan, "Contribution to the study of some generalized closed sets in bitopological spaces, March 2009, (Ph.D Thesis).
- [18] J. C. Kelly, Bitopological Spaces, Proc. London Math Society, 13(1963), 71 89.
- [19] N.Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19 (2) (1970), 89-96.
- [20] D.Narasimhan and J.Jayanthi, gs** closed set, International Journal of Pure and Applied Mathematics, Volume 119 No. 6 2018, 209 218.
- [21] Njastad .O, On Some Classes of nearly open sets, Pacific J. Math 1965,15,1961 70.
- [22] T. Noiri, Weakly α continuous function, Internat. J. Math. Sci. 1987, 10, 483 90.
- [23] P.Padma, New separation axioms, new type of compact spaces and new class of functions in bitopological spaces, September 2018, Ph.D thesis.
- [24] P.Padma, Q* connectedness in bitopological spaces, International J. of Math. Sci. & Engg Appls, ISSN 0973 9424, Vol 8 No I (January 2014) PP 207 – 211.
- [25] W.J.Pervin, Connectedness in bitopological spaces, Indag. Math., 29(1967), 369 372.
- [26] Sarika M.Patil and T.D. Rayanagoudar, αg^*s compactness and αg^*s connectedness in topological spaces, Global journal of pure and applied mathematics, ISSN 0973 1768, Volume 13, November (2017), pp. 3549 3559.
- [27] J.Swart, Total disconnectedness in bitopological spaces and product bitopological spaces, Indag. Math., 33 (1971), 135-45.
- [28] O.R.Sayed and A.M.Khalil, Egyptian Journalof Basic and Applied Sciences 3(2016), 26 34. S. Willard, General Topology, Addison-Wesley Publishing Company, Reading, Massachusetts, (1970).