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Abstract — O.R.Sayed, A.M.Khalil [23] introduced the notion of D - closed sets in topological spaces in 2015.The aim of this paper is to 

introduce the notion of pairwise DO - connected spaces and pairwise DO - disconnected spaces. 
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I. INTRODUCTION 

 
    Pervin [15] was first to define connectedness and components in a bitopological spaces, whereas the concept of quasi 

components in bitopological spaces was introduced by Reilly and Young [25]. The generalized closed set has been first studied 

and initiated by N.Levine in the year 1970 [19]. This generalized closed set has lead to significant contributions to generalization 

of continuity. Bhattacharya and Lahiri [4] introduced a closed set namely sg - closed set. Further Arya and Nour [1] defined 

generalized semi open sets ie) gs - open using semi open sets. Further Elvina Mary L and  R.Myvizhi [13] has worked on gs* - 

closed set. Recently, the notions of pairwise S*GO - connected spaces were introduced by K.Kannan [17] in bitopological spaces 

in 2009.  In the year 2018, gs** - closed sets were introduced by D. Narasimhan and R.Subhaa [20].   

Topology and Real Analysis is the study of variously modified forms of continuity, separation axioms, etc. by utilizing 

generalized open sets. One of the most well-known notions and also inspiration source are the notion of α-open [1] sets introduced 

by Njåstad in 1965. Since then, many mathematicians turned their attention to the generalization of various concepts in General 

Topology by considering α-open sets ([3], [22]) and generalized closed sets [2,10].In 1982 Dunham [14] used the generalized 

closed sets to define a new closure operator, and thus a new topology τ*, on the space, and examined some of the properties of this 

new topology. 

In this section, the new type of connected and disconnected spaces called pairwise DO - connected spaces, pairwise 

DO - disconnected spaces are introduced. 

II. PRELIMINARIES  

 
     Let (X,) or simply X denotes a topological space. For any subset A  X, the interior of A is the largest open set contained in A 

and the closure of A is the smallest closed set containing A and they are denoted by int (A) and cl (A) respectively. 

Definition 2.1 A subset A of a topological space (X, τ) is called  a semi - open set  if A   cl [int(A)]. 

Definition 2.2 A subset A of a topological space (X, τ) is called  a 

a. generalized closed set (g - closed set) if cl (A)  U whenever A U and U is open in X. 

b. gs closed set (g - closed set) if scl (A)  U whenever A U and U is open in X. 

c. gs* - closed set if cl (A)  U whenever A U and U is gs - open in X. 

d. gs** - closed set if cl (A)  U whenever A U and U is gs* - open in X. 

e. D- closed set [23] if cl*(int(cl*(A)))  A. 
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Definition 2.3  The intersection of all g - closed sets containing A [7] is called the g - closure of A and denoted by 𝑐𝑙∗(𝐴), The 

union of all g – open sets contained in A [8] is called the g - interior of A and denoted by 𝑖𝑛𝑡∗(𝐴).  

III. PAIRWISE DO - CONNECTED SPACES 

Let (X, 1, 2) or simply X denotes a bitopological space. For any subset A  X, τ1 -  D - int (A) , τ1 -  D - cl (A) denote 

D  - interior, D  - closure of a set A in X with respect to the topology τ1, respectively. O.R.Sayed, A.M.Khalil [23] introduced 

the notion of D - closed sets in topological spaces in 2015. In this section, the new type of connected and disconnected spaces 

called pairwise DO - connected spaces, pairwise DO - disconnected spaces are introduced. 

Definition 3.1. Let (X, 1, 2) be a bitopological space. Then (X, 1, 2) is said to be pairwise DO - connected if X cannot be 

expressed as the union of 2 non empty disjoint sets A and B such that  (A  τ1 -  D - cl (B))  (τ2 - D - cl (A)  B) =   … (1).  

If (1) is satisfied, we call A and B as pairwise D - separated sets. If X = A  B, where A, B satisfy (1), then X is called a 

pairwise DO - disconnected space. In this case, we write X = A / B a pairwise D O - separation of X. 

Example 3.1. Let X = {a, b, c}, τ1  = {, X, {a}, {a, b}}  and  τ2  = {, X, {a, b}}.Then X = {b, c}  {a} and {b, c}  {a} = . Here                        

{b, c} and {a} are τ1 - D  - open and τ2 - D  - open sets respectively. Therefore, (X, 1, 2) is pairwise D O - disconnected 

space. 

Example 3.2. Let X = {a, b, c}, τ1  = {, X, {a}}  and τ2  = {, X, {c},{b, c}}. Let G = {a, c} and H = {c}. Then X  G  H, where G 

is τ1 - D - open and H is τ2 - D  - open, G  H  . Hence (X, 1, 2) is pairwise D O - connected. 

Theorem 3.1. If C is a pairwise DO - connected subset of a bitopological space (X, 1, 2) which has the  pairwise D O - 

separation  X = A / B then C  A or C  B. 

Proof. Suppose that (X, 1, 2) has the pairwise DO - separation X = A / B. Then X = A  B, where A and B are nonempty 

disjoint sets such that A  (τ1 - D  - cl(B))  (τ2 - D - cl(A)  B) =  … (1). Since A  B = , we have A = 𝐵𝑐 and B = 𝐴𝑐… 

(2). Now, ((C  A)  τ1 -  D  - cl(C  B))  (τ2 - D - cl(C  A)  (C  B))  A  τ1 - D - cl(B))  (τ2 - D - cl(A)  B) =            

[ by (1)].  C  A =  or C  B = .  C  𝐴𝐶(or) C  𝐵𝐶 . C  B (or) C  A [by (2)]. 

Theorem 3.2. If A is a pairwise D O -  connected and A  B  τ1 - D  - cl(A)  τ2 - D - cl(A) then B is pairwise DO - 

connected. 

Proof. Suppose that B is not pairwise D O - connected . Then B = C  D, where C and D are 2 non empty disjoint sets such that 

(C  τ1 - D  - cl(D))   (τ2 - D - cl(C)  D) = . Since A is pairwise DO - connected, we have A  C or A  D. Suppose   A  

C. Then D  D B  D  τ2 - D  - cl(A)  D  τ2 - D - cl(C) = . Therefore,   D  . Consequently, D = . Similarly, we 

can prove C =   if A  D {by theorem 3.1}. This is the contradiction to the fact that C and D are nonempty. Therefore, B is 

pairwise DO - connected. 

Theorem 3.3. Let (X, 1, 2) be a bitopological space. If every 2 points of X are contained in some pairwise DO - connected 

space of X then X is pairwise DO - connected. 

Proof. Assume that X is not pairwise DO - connected. Then 𝑋 = 𝐴
𝐵⁄ .  X = A  B, where A is τ1  – D  - open and τ2 - D  - 

open set with A  B = . Let x A and y B. By hypothesis, there exists a pairwise D  - connected subset C of X such that  x  

C and y  C, by the above theorem 3.2, C  A or C  B.  x, y  A or  x, y  B, a contradiction. Hence X is pairwise D  - 

connected.   

 

IV. CONCLUSION 

  In  this  paper,  the concept of pairwise DO  - connected and pairwise DO  –  disconnected spaces are introduced and 

some of itscharacterizations are studied. 
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