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ABSTRACT 
 

This paper represents a new automatic method of classifying the heart sound status using the 
loudness features of the heart sound. The method includes the following three main steps. First, the 
heart sound, which is usually found noisy, is heavily filtered by a 8

th
 order Chebyshev Type-II filter. 

The event synchronous method is later used to segment the filtered heart sound into the first heart 
sound, systole, second heart sound and diastole. In the second step, the loudness feature is 
represented using the mean rows of its spectrogram. The third step categorises the heart sound using 
the Gaussian Mixture Model approach.  With a success rate of 97.77 percent, the suggested method 
has been evaluated on a huge database of heart sounds containing over 3000 recordings.   
 
Keywords: Phonocardiography; event synchronous segmentation; loudness; spectrogram; GMM 

classifier. 
 

1. INTRODUCTION 
 
Heart sounds entail crucial heart function information. In conditions of heart abnormalities, such as 
valve dysfunctions and rapid blood flow, additional sounds are heard in regular heart sounds, which 
can be employed in pathology diagnosis [1-3]. Heart valve disorders are one of the main causes for 
heart diseases, which may lead to loss of life.  Heart sounds are produced by the heart's 
electromechanical activity with each heartbeat [4]. In the case of normal heart sounds, heart valves 
create time variable low frequency transient signals. The turbulence in blood flow caused by stenosis 
or regurgitation through the heart valves causes pathological cardiac sounds or murmurs [5]. 
Automated classification of pathology in heart sounds are been reported in literature for over 50 years 
but accurate diagnosis remains a significant challenge. Gerbarg et al (1963) were the first to publish 
on the automatic classification of pathology in heart sounds using a threshold-based method 
(specifically to aid the identification of rheumatic heart disease in children). In general methods for 
heart sound classification can be grouped into four categories: (1) artificial neural network-based 
classification; (2) support vector machine-based classification; (3) HMM-based classification and 
clustering-based classification (4). For relative brevity, some of the prominent resent works in this field 
are listed in Table 1. Table 1 also gives details on the evaluation of the method, and training-test sets 
used in these approaches. Uguz (2012a) [6] used an ANN-Fuzzy approach with wavelet transform to 
classify three-class namely normal, pulmonary stenosis, and mitral stenosis. With a 50/50 train/test 
split of a dataset of 120 subjects, success rate of 100% in terms of sensitivity, 95.24% in terms of 
specificity, and 98.33% average accuracy is been reported for the three classes. Uguz (2012b) [7] 
also used time-frequency as an input to an ANN. A total of 120 heart sound recordings, split 50/50 
into train/test, was used. They reported 90.48% sensitivity, 97.44% specificity and 95% accuracy for a 
three-class classification problem (normal, pulmonary and mitral stenosis heart valve diseases). Ari 
et al (2010) [8] used a least square SVM (LSSVM) method for classification of normal and abnormal 
heart sounds using features based on wavelet transform. The performance evaluation of the proposed 
method was done using 64 recordings consisting of normal and pathological cases. LSSVM was 
trained and tested on a dataset with 50/50 (train/test) split, the authors reported 86.72% accuracy on 
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their test dataset. Zheng [9] et al (2015) decomposed heart sounds using wavelet packets and then 
extracted the energy fraction and sample entropy as features for the SVM input. They tested on 40 
normal and 67 pathological patients and reported a success rate 97.17% in terms of accuracy, 
93.48% in terms of sensitivity and 98.55% in terms of specificity. Patidar [10] et al (2015) used the 
tunable-Q wavelet transform as an input to LSSVM with varying kernel functions. A dataset of 4628 
cycles from 163 heart sound recordings was used (and an unknown number of patients) and a 98.8% 
sensitivity and 99.3% specificity is reported, but without stratifying patients (having mutually exclusive 
patients in testing and training sets), and therefore overfitting to their data. Maglogiannis [11] et al 
(2009) used Shannon energy and frequency features from four frequency bands (50–250, 100–300, 
150–350, 200–400 Hz) to develop an automated diagnosis system for the identification of heart valve 
diseases based on an SVM classifier. Testing on 38 normal and 160 heart valve disease patients they 
reported an 87.5% sensitivity, 94.74% specificity and 91.43% accuracy. Gharehbaghi [12] et al (2015) 
used frequency band power over varying length frames during systole as input features and used a 
growing-time SVM (GTSVM) to classify pathological and innocent murmurs. When using a 50/50 
train/test split (from 30 patients with AS, 26 with innocent murmurs and 30 normal), they reported 
86.4% sensitivity and 89.3% specificity. Saracoglu (2012) [13] applied HMM in an unconventional 
manner, by fitting an HMM to the frequency spectrum extracted from entire heart cycles. The exact 
classification procedure included the training of four HMMs, and then evaluation of the posterior 
probability of the features for classification of the recordings. They optimized the HMM parameters 
and PCA-based feature selection on a training set and reported 95% sensitivity, 98.8% specificity and 
97.5% accuracy on a test dataset of 60 recordings. Quiceno-Manrique [14] et al (2010) used a simple 
kNN classifier with features from various time-frequency representations on a subset of 16 normal and 
6 pathological patients. They reported 98% accuracy for discriminating between normal and 
pathologic beats. However, the kNN classifier parameters were optimized on the test set, indicating a 
likelihood of over-training. Avendano-Valencia [14] et al (2010) also employed time-frequency features 
and kNN approach for classifying normal and murmur patients. In order to extract the most relevant 
time-frequency features, two specific approaches for dimensionality reduction are presented in their 
method, namely, feature extraction by linear decomposition, and tiling partition of the time-frequency 
plane. The experiments were carried out using 26 normal and 19 pathological recordings and they 
reported an average accuracy of 99.0% when using 11-fold cross-validation with grid-based 
dimensionality reduction. In our work, heart sounds are classified by using the loudness index 
features obtained using spectrogram. In order to reduce the complexity and burden of computations, 
maximum and minimum values of the loudness index derived from spectrogram have been used in 
this work as compared to usage of spectral centroid. 
 

2.  PRE-PROCESSING OF THE HEART SOUNDS 
 
In this study we have used the dataset of heart sounds available from the Physionet database [15], 
The raw heart sound of this database is further pre-processed for de-noising and normalisation. 
 

2.1 Heart sound De-noising 
 
Heart sounds obtained from diagnostic tools are generally contaminated with noise from various 
sources. These sounds hinder the early detection of mild heart sounds in the phonocardiogram. So 
filtering of noise to remove such artefacts becomes essential. The filtering is to be done taking in to 
account that there is no loss of diagnostic information required for analysis of the phonocardiogram, 
but removing all unwanted components. The heart sound taken from the Physionet database [15] is 
contaminated with various types of noises. The heart sound selected is heavily filtered to remove the 
maximum noise from the sound. A 6

th
 order chebyshev low pass filter is used for this purpose. The 

filtered heart sound is then put through the second phase of analysis namely segmentation. The 
filtered heart sound later scaled to the required amplitude levels by normalisation. The normalisation 
procedure involves dividing each heart sound sample by the maximum value of the heart sound 
sample in each heart sound. 
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2.2 Segmentation of Heart Sound 
 
After de-noising and normalisation of heart sound the phonocardiogram is segmented by making use 
of the occurrence of cardiac events. Some previous studies have used the electro-cardiogram (ECG) 
recordings to segment the heart sounds [15]. However, these signals are not available all the time 
along with the PCG collections data. Spectrum analysis using Daubechies four and five wavelet 
coefficients [16] provide a alternate approach to separate the original heart sound signals into 
individual cycles. The signals are down sampled by a factor of four resulting in highest power to the 
first and second heart sounds (S1 and S2) in each cycle. Segmentation based on cycle frequency and 
dynamic clustering in time-frequency domains is been considered [17]. We have addressed the 
procedure for segmentation of heart sound using the event synchronous method [18]. Event 
synchronous method is a fast implementation of segmentation using spectrogram. It reduces the 
computational time and complexity involved in other methods. Fig. 1 illustrates a sample abnormal 
heart sound taken from the physionet database with clear distinguishable segmentation boundaries. A 
brief step by step procedure utilised is explained here: 
 

 
 

Fig. 1. Segmented heart sound (blue) and Segmentation boundaries (S1 red, S2 green) 
 
1. Spectrogram, is obtained from the cardiac sound signal, at roughly 3ms window. 
 
2. For a better interpretation of heart sound murmur pitch and loudness the spectrogram is converted 
into bark scale and then smoothened using a hanning window [19]. 
3. The sensation of loudness is derived from the spectrogram by summing the amplitudes of all 

frequency bands of the sound:        
       

   

 
   (1) Ek represents the magnitude of the kth 

frequency band present in the spectrogram. There is a total of N such bands.  
4. Event detection function is found by differentiating the loudness index function to obtain peaks that 
correspond to the onset and offset transients. 
 
5. Systole and diastole are recognised by their durations with systole being shorter than the diastole.  
6. A single cardiac cycle is obtained from the segmentation of all sounds. 
 

3. FEATURE EXTRACTION 
 

3.1 Extraction of Loudness Features 
 
It is known from auscultation and also from literature that there exists silence period in the normal 
heart sounds namely systole and diastole where the intensity of the sound is minimal. In patients 
suffering from valve disorders such as stenosis and regurgitation certain high pitch sounds are also 
audible. These sounds have less loudness (grade 1-grade 4 sounds) compared to the first and 
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second heart sounds. For grade 5 and grade 6 abnormal sounds, the loudness is much more than the 
first and second heart sounds. More energy is concentrated in the systoles and diastoles of abnormal 
sounds than the normal ones. Clearly loudness index is a measure than can be possibly used to 
identify and distinguish heart sounds with various indices.  
 
To determine the features for classification we repeat the steps mentioned in the previous stage, 
namely 1 to 3. Maximum and minimum values of the heart sound loudness index are found and are 
used as the two features for the classification of these sounds. Maximum loudness indices are high 
for abnormal sounds while the minimum loudness indices are low for normal sounds. Fig 2 shows a 
single normal cardiac cycle with loudness function. Fig 3 shows a single abnormal cardiac cycle with 
loudness function. Sharp peaks corresponding to murmurs are visible in the abnormal sounds. 
 

 
 

Fig. 2. Normal heart sound and the loudness curve 
 

 
 

Fig. 3. Abnormal Heart sound with loudness curve 
 

4. CLASSIFICATION OF HEART SOUNDS USING GMM MODEL 
 
Literature survey reveals many classification methodologies used for heart sound classification as 
listed in Table 1. Euclidean distance (or in general, Minkowski distance) is a commonly used distance 
metric. The drawback of this Euclidean metric is that the largest scaled feature gets dominated. 
Solution to this problem could be normalization of the continuous features to a common range of 
variance. Another drawback of Euclidean metric is that linear correlation between features can distort 
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the distance metric. Euclidean distance always gives hyper-spheroid clusters. Mahalanobis distance, 
used in GMM, is expected to overcome all the above limitations where it provides hyper-ellipsoidal 
clusters. The database consisting of two sound types is assumed to be generated by the two 
Gaussian processes, of course each Gaussian could have generated by many biochemical processes 
inside the heart having arbitrary stochastic distribution. Therefore, the entropy of the resultant 
distribution tries to become highest. Hence the resultant distribution is Gaussian which is having the 
maximum entropy among any other possible stochastic distributions. The probability distribution 
function (pdf) is given by equation 4. 
 

         
 

                   
 

 
                                                (4) 

 
Where d is the dimensionality. ML estimators of µ and ⅀ are computed by 
 

   
 

 
                             (2)    
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                                     (5) 

 
 
The objective function is formed given by Eq. (4), by summing the class conditional density over all 
the classes for a feature in the feature vector; and again taking the product for all the features, 
assuming the features are linearly independent. Such likelihood based objective function for 
optimization is maximized by EM [20] algorithm. It is a nonlinear optimization method which optimizes 
the log likelihood over the entire feature space, including both observed data and hidden information 
embedded in the data. The EM algorithm consists of Expectation step (E-step) and Maximization step 
(M-step). In E-step the posterior density based on conditional density using Bayes rule [21] is 
computed. In the M-step the initial model is replaced with a new model which is a better one to 
represent the features such that the log-likelihood is more than that of the previous iteration. The 
iterations are repeated until the new estimate will give same model and there will not be any 
improvement in the model. The algorithm is briefly described here: 
 
Input: A set of N feature vectors               model structure                     where 

µ’s and ⅀’s are parameters for the Gaussian models and α’s are prior parameters subject to    
               . 
 
Output: Trained model parameters   that maximizes the data likelihood                         

(6) 
 
And a partition of data vectors given by the cluster identity vectorY = {y1…, yN}, yn ∈  {1..., K}. 
 
Steps:  
 
1. (Initialization) Initialize the model parameters  . 
2. (E-Step) The posterior probability of model k , given a data vector xn and current model 

parameters   , is estimated as           
          

            
            (7)where the pdf p(e|λ) is given in 

(1) 
 

3. (M-Step) The ML re-estimation of model parameters   is given by         
     

 
             

           
            

(8)                 
     

 
                            

           
    (7)  

     
 

 

 
                       (9) 

 
4. (Stop) if P(E|  ) converges; otherwise go back to Step 2; 
 
For each data vector xn, set                                   (10) 
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Table1. Comparative results of previous segmentation methods 
 

Author Database Recording 
length 

Classification 
method 

features Se (%) Sp (%) Acc (%) Notes on 
database 

Uguz (2012a) 40 normal,  40 
pulmonary and  40 
mitral stenosis 

- ANN Wavelet 100 95.24 98.33 50-50 train-test 
split 

Uguz (2012b) 40 normal,  40 
pulmonary and  40 
mitral stenosis 

- ANN Time-
Frequency 

90.48 97.44 95 50-50 train-test 
splits 

Ari et.al (2010) 64 patients (normal  
and pathological) 

Each 8 
cycles 

SVM Wavelet - - 86.72 50-50 train-test 
splits 

Zheng et.al (2015) 40 normal and  67 
pathological 

- SVM Wavelet 93.48 98.55 97.17 Cross- Validation  

Patidar et.al 
(2015) 

Total 4628 heart  
cycles, 626 normal  
and 4002 pathological 

- SVM Wavelet  98.8 99.3 98.9 80% training 20% 
test 

Gharehbaghi et al 
(2015) 

30 normal,  26 
innocent  and 30 AS 

Each 10s SVM Frequency 86.4 89.3 - 50-50 train-test 
split 

Sarcoghlu et.al 
(2012) 

40 normal,  40 
pulmonary and  40 
mitral stenosis 

- HMM DFT and PCA 95 98.8 97.5 50-50 train-test 
split 

Quiceno-Manrique 
et al (2010) 

16 normal and  6 
pathological 

- kNN Time-
Frequency 

- - 98 Cross- Validation 

Avendano-
Valencia et al 
(2010) 

26 normal and  19 
pathological 

- kNN Time-
Frequency 

99.56 98.45 99.0 Cross- Validation 

 
Table 2.  Scoring of all sounds 

 

sounds TP TN FP FN Se(%) Sp(%) Acc(%) 

Normal 109 112 0 3 97.13 100 98.33 
Abnormal 112 109 3 0 100 97.13 98.33 
Total 221 221 3 3 98.33 98.33 98.33 
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5. RESULTS AND DISCUSSION 
 

5.1 Database Used 
 

Heart sound present in the Physionet heart sound database [15] were taken from several people 
around the world, collected at either a clinical or nonclinical environment, from pathological patients. 
The Challenge training set consists of five databases (A through E) containing a total of over 3000 
heart sound recordings. The duration of heart sound varies from 5 seconds to just over 120 seconds. 
The heart sound recordings were obtained from different locations on the body. Four locations used 
for acquisition are aortic area, pulmonic area, tricuspid area and mitral area. Abnormal heart sounds 
were taken from patients with a confirmed cardiac diagnosis. The patients suffered from a variety of 
illnesses such as heart-valve defects and coronary artery disease. Heart valve defects cover mitral 
valve prolapse, mitral regurgitation, aortic stenosis and valvular surgery Pathological patients included 
both children and adults. Each subject/patient have contributed between one and six heart sound 
recordings. All recordings have a sampling rate of 2,000 Hz and are in .wav format. 
 

5.2 Classification of Heart Sounds 
 

The heart sounds selected from the physionet database are pre-processed by passing the sounds 
through a sixth order type 1 chebyshev filter to remove the redundant noise. The heart sounds are 
normalised in the range [22,23]. The normalised heart sounds are processed using the event 
synchronous segmentation procedure. This results in cycles of heart beat of approximately 3 s 
duration. Two datasets are formed consisting of abnormal and normal heart sounds apiece, using the 
sounds in the physionet database. In each of the datasets two groupings are done one for training set 
and the other for test set. 50% of the dataset sounds make up the training set while the remaining 
50% sounds make up the test set. The sounds are then clustered using the GMM classifier. Fig 4 
shows the log likelihood function plot for the sounds. The function is a negative function and it 
increases steadily and then stabilises to a constant value for a total of 101 iterations. Fig 5 shows the 
scatter plot of all sounds. Two features were used the maximum loudness along x axis and minimum 
loudness along y axis. Fig 6 shows the EM plot of all sounds. The points in yellow are the abnormal 
sounds with higher loudness values while the sounds in green are the normal sounds with lower 
loudness values. The centroids are also shown and the ellipse represents the points closer to the 
centroid. A total of 112 sounds of each type- abnormal and normal were used for training purpose. 
Similarly, 112 sounds of each type were used for testing purpose as well. Out of 112 sounds, 3 
sounds in normal dataset misclassified as abnormal sounds due to the presence of noise that 
remained even after filtering. This is shown in Table 2. Both Normal sounds and abnormal sounds 
gave a similar accuracy of 98.13%. So the overall accuracy was 100%. The sensitivity of normal 
sounds was 97.33% while the abnormal sounds gave 100%. The specificity of normal sounds was 
100% while the abnormal sounds gave 97.33%. This gave an overall sensitivity and specificity of 
98.13%. 
 

 
 

Fig. 4. Log likelihood variations versus iterations 
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Fig. 5. Scatter plot of all observations 
 

 
 

Fig. 6. EM plot of all observations 
 

6. CONCLUSION 
 
In this paper GMM based classifier is presented for heart sound classification after pre-processing 
and segmenting the heart sound. The classification scheme is based on the maximum and minimum 
loudness indices extracted from the spectrogram of the heart sound. GMM overcomes the limitations 
of Euclidean metric even though the dataset has different range of variations. The model scales down 
the data to zero mean and unit variance. This study highlights that classification of heart sound using 
GMM classifier is comparable to a state of the art classifier with high accuracy of 98.13 %. The 
accuracy exceeds the performance of other classifiers mentioned in literature, considering the large 
dataset used in this work.  
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