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ABSTRACT

The major challenge in phonocardiography and heart sound analysis is the involvement 

of environments with adverse effects such as noise, distortion and multiple sources.

Methods existing in literature which address the above said problem have their own

limitations and lacunae.

The objective of this research work is to investigate and develop noise estimation, noise 

reduction, segmentation and classification algorithms for Phonocardiograms, so as to 

improve the performance over the existing heart sound processing methods in literature. 

In this work the phonocardiogram available for research from MIT Heart sound 

database Physionet database(MITHSDB). The MITHSDB is hosted in the Physionet 

repository. MITHSDB is the largest open access heart sound database available till date 

with over 3000 heart sound recordings. The sounds in the database are corrupted with 

noises of various types and sources. 

As the type of noise in MITHSDB is unknown, in this work the noise present is assumed 

as stationary/non stationary or both. Under this assumption, it is attempted to de-noise

these sounds using time frequency block threshold method. Noise estimation which 

forms an integral part of block threshold is done using activity detection and improved 

minimum controlled recursive averaging.

The de-noised heart sounds are normalized and then processed for automatic 

segmentation      event synchronous method. The event synchronous method detects the

occurrence of cardiac events-the first heart sound (S1) and the second heart sound (S2) 

using the loudness index.

The use of loudness features obtained using loudness index is also investigated for 

classification of heart sounds. The loudness feature is extracted using the spectrogram 

of event synchronous segmentation method, this feature is then classified using 

Gaussian Mixture Model (GMM). The GMM utilizes clustering of sounds to classify 

the sounds as normal and abnormal.

The methods used in this work show good results in terms of performance metrics when 

compared to the current methods present in literature.
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Chapter 1 

Introduction 

 
1.1 The Definition and need for Phonocardiography 

A Phonocardiogram (PCG) is an audio-visual display of acoustic vibrations made in the form 

of cardiac sounds and murmurs by the heart. These are often obtained using an instrument 

called as Phonocardiograph. The study of such various types of medical recordings made during 

cardiac auscultation is often termed as Phonocardiography. 

Heart sound analysis is a detailed step by step procedure adopted during cardiac auscultation 

particularly aimed at careful diagnosis of cardiac diseases, long term monitoring of patient 

health, as a biometric tool for patient authentication and for teaching, education and research 

purpose.   

Phonocardiograms reveal critical health related statistics that correspond to the proper 

functioning of the cardiac valves. Normal heart sounds have two important and fundamental 

components the S1 (lub) and S2 (dub) sounds. Presence of additional sounds generally indicate 

abnormality. A PCG with third sound could signal critical   heart failure, whereas as presence 

of pathological murmurs might indicate the defective valves or orifice in the septal wall. 

Phonocardiogram acquisition instruments are used for long time monitoring of patients 

suffering from various cardiac disorders. Real time Continuous monitoring helps the doctors 

to study the disease on a case to case basis and take necessary and corrective action. These 

Phonocardiogram instruments are now equipped with both wired and/or wireless technologies 

that make cardiac auscultation easy and user friendly. The new systems support telemetry thus 

enabling the doctors to serve the patients at remote locations where access to medical facilities 

is quite difficult. 

1.2 Overview of Heart Sound Signals 

The PCG signals are non-linear and non-stationary sound vibrations picked from the chest. 

Sounds emanate from heart as a result of the rapid inward contraction and outward relaxation 

of the cardiac muscles. An acoustic stethoscope helps the doctor to identify four classes of 

sounds during cardiac auscultation: (i) The lub-dub heart sounds namely the S1 and the S2, (ii) 

The diastolic sounds namely the S3 and the S4, (iii) The murmurs and (iv) The high pitched 

sounds (clicks and snaps). Heart sounds show varying levels of intensity, frequency, duration, 
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and quality [13]- [18]. Fig. 1.2.1 shows a pictorial representation of the PCG signal with its 

important heart sounds. 

 

Figure 1.2.1 Time Domain Plot of PCG signal with its different components. 

First Heart Sound (S1): The first component of the PCG signal (S1) starts at the onset of the 

systole. The mitral component (M1) begins at a time slot 20-30ms before the tricuspid 

component (T1) [15]. The S1 is a long duration low-pitch sound [14]. The intensity of the 

mitral component (M1) is much more than the tricuspid component (T1) intensity due to the 

sudden rise in left ventricular pressure. S1 is evaluated by noting its features such as Quality, 

intensity, and degree of splitting [13]- [18]. Myocardial depression, ventricular septal defect 

and acute aortic regurgitation are some of the diseases associated with decreased intensity of 

S1. Some pathologies like the Right bundle branch block (RBBB), or ventricular tachycardia 

or premature ventricular contraction (PVC) arises due to the increase in the splitting of S1 

sound (more than 60ms) [14]. 

Second Heart Sound (S2): The other heart sound in the PCG signal (S2) begins at the end of 

the systole. Compared to S1 sound, S2 sound is usually short and is of slightly higher pitch. In 

the PCG signal the S2 lies in the frequency range 10-400 Hz and is of the duration 50-150ms 

[9]. The two S2 sounds due to aortic valve (A2) and the pulmonic valve (P2) are as short as 

50ms [9]. The delay between the closure of the two valves associated with A2 and P2 causes a 

split S2 sound. S2 can be identified by its splitting and intensity. The amplitude and frequencies 

of aortic components (A2) is slightly more than the pulmonary components (P2) [3]. The 

splitting interval of second heart sound (S2) widens up on inspiration and narrows down on 

expiration. Vital parameters like aortic Blood pressure is determined by the splitting of the S2 
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[8]. There a number of diseases related to split S2 related pathology like Pulmonic stenosis, 

RBBB, left bundle branch block (LBBB), atrial septal defect and right ventricular failure. It is 

observed, in normal PCG signals, that the diastole is much longer than the systole [30]- [40]. 

Third Heart Sound (S3): The third component of the PCG signal occurs during diastolic 

period, usually 100-150ms after the S2. This happens when there is a sudden deceleration of 

blood flow within the ventricles. When compared to the S1 and S2, the S3 is of low amplitude 

and low frequency. The PCG signal component S3 lies in the range of 30 Hz-90 Hz and lasts 

for a duration of 70 ± 15ms [43], [44]. S3 is often seen in patients with acute impaired 

myocardial reserve [16]. The S3 provides clinical information about hemodynamic and systolic 

dysfunction, and is useful for diagnosis of heart failure [41]- [48]. The presence of S3 in PCG 

of adults has been correlated with heart failure. 

Fourth Heart Sound (S4): The S4 occurs when there is contraction of atria. As a result, the 

blood may be forced into the distended ventricles. The S4 occurs before the first heart sound. 

The S4 sound signifies low-frequency vibrations with frequency band of 20-30 Hz. These are 

seen in the PCG of patients with diminished left ventricular compliance [13]- [18].  

1.3 Heart Murmurs and Pathological Sounds 

Murmurs are caused when there is turbulence in the flow of blood or vibration of the tissues. 

In pathological cases, different types of murmurs occur due to dysfunctions in the valves. 

Murmurs may be systolic, diastolic or continuous in nature. The heart sound can be adjudged 

using the various types of parameters such as: 

1. The PCG timing parameters (early, mid, late, or pan) 

2. Intensity, duration, pitch (low, medium, or high) parameters of the PCG 

3. Quality parameters of the PCG (musical, blowing, harsh or rumbling) 

4. Shape parameters of the PCG such as Crescendo, Decrescendo and Crescendo-

decrescendo [6], [14] - [18].  

The cardiac murmurs are synonymous with the pitch and intensity related to the velocity of 

blood. Accurate diagnosis is dependent on the timing of the murmur. 

Systolic murmurs: Pathology associated with systolic murmurs are as follows: 
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1. Acute Mitral Regurgitation (MR) and Tricuspid Regurgitation (TR) are systolic 

murmur. 

2. Aortic stenosis (AS), Pulmonic stenosis (PS), Hypertrophic Obstructive Cardio-

Myopathy (HOCM) and Atrial Septal Defect (ASD) are Mid-Systolic murmurs.  

3. Mitral Valve Prolapse (MVP) is a late-systolic murmur. 

4. Mitral Regurgitation (MR), Tricuspid Regurgitation (TR), and Ventricular Septal 

Defects (VSD) are holosystolic or pansystolic murmurs. 

 Diastolic murmurs:  The various pathologies associated with diastolic murmurs are as follows: 

1. Aortic and Pulmonic Regurgitation are the early diastolic murmurs.  

2. Mitral or Tricuspid Stenosis is a mid-late diastolic murmur. 

Continuous murmurs: Patent Ductus Arteriosus (PDA) and systemic Arterio Venous Fistulae 

(AVF) are examples of continuous murmurs [11]- [17], [49]- [68].  

Various types of heart murmurs in the PCG signal are shown in Fig 1.3.1. Defects of the 

semilunar valves and the mitral and tricuspid valves also results in clicks and snaps. The clicks 

and snaps indicate distinctive features of some type of heart defects. 

 

Figure 1.3.1: Various types of Murmurs that occur in PCG signal 
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1.4 PCG Parameter for Cardiovascular disease diagnosis  

In clinical studies, specific heart sound indices are measured for evaluating heart functions of 

subjects, maternal, fetal and infants with various physiological and pathological conditions. 

The various parameters used for CVD detection are listed below. 

1. Cardiac Contractility Change Trend (CCCT): Ratio of the S1 amplitude with exercising 

to the S1 amplitude without exercising [10].  

2. Amplitude of S1 [29]. 

3. Ratio of S1 sound amplitude to S2 sound amplitude [10], [28]. 

4. Ratio of the amplitude of T1 to the amplitude of the M1. 

5. Ratio of S3 amplitude to S2 amplitude. 

6. Ratio of the diastole to the systole [25], [10], [27].  

7. Location of S1 in the PCG [7]. 

8. Duration of the PCG and the Energy of Instantaneous Frequencies (EIFs).  

9. A2-P2 split [1], [3].  

10. Rate of heart beats (HR) [25], [27]. 

11. Duration and frequencies of S3 and S4 sounds; timing (location), configuration (shape), 

loudness (intensity), spectral content, duration of murmurs.  

Modern digital electronic stethoscopes have the ability to carry out amplification, playback, 

display and recording of the heart sound signals in real time. But automatic and quantitative 

measurement of heart sound parameters helps in the diagnosis of cardiac pathology. 
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Chapter 2 

A Review of Heart Sound Analysis 

Global survey in 2012 revealed that Cardiac pathology resulted in the deaths of 17.5 million 

people worldwide. In low-income countries, there is shortage of high quality diagnostic 

equipment. In the richer economy countries, sophisticated technology have developed at a rapid 

pace. However, heart sound auscultation still remains an important emergency tool for the 

physicians and doctors. Also, access to expert diagnosis is restricted due to the high patient to 

doctor ratios (50,000:1) in low and mid economy countries. A solution to this problem lies in 

providing cure using wireless technology via the smartphone or cloud. 

Methods have been developed to diagnose cardiac disorders by means of heart sound signal 

analysis that includes automated heart sound segmentation and classification techniques to be 

used in low cost clinical applications.  

The literature survey also shows that the PCG provide vital information of the heart. Heart 

sound analysis can be broken down to three categories: i) preprocessing; ii) segmentation; and 

iii) classification. Preprocessing algorithms are used to identify noise and artefacts in the signal 

and remove them. Various machine learning algorithms have been devised to contain the 

redundant noise and obtain a clean signal. To screen the pathologies various segmentation and 

classification algorithms have been studied. The segmentation algorithms detect pathologies 

by identification of the cardiac events. For example, the presence of an additional S3 in adults 

could indicate heart failure. The classification algorithms are used to identify the pathology in 

the heart sounds. For example, the presence of murmurs in systole could indicate stenosis in 

the valves, while murmurs in the diastole could indicate regurgitation of blood in the valves. 

2.1 Problem Identification 

Heart sound analysis methods mentioned in Literature can be inefficient due to following 

reasons. 

1) The method may use only a small amount of data. 

2) There is severe lack of adequate separate test dataset for validation of the data. 

3) The developed method may not use a different type of PCG recordings obtained under 

different types of environments. 

4) The method may perform validation only on clean recordings.  

In our work, we concentrate on more accurate techniques of cardiac sound analysis on normal 
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and abnormal heart sounds. That will include developed techniques for preprocessing, 

segmentation and classification under harsh and adverse environment. In our work we have 

made use of the Physionet Database (MITHSDB) for cardiac sound analysis. This database is 

the single largest public collection of PCG recordings/ heart sounds obtained worldwide. 

The heart sound analysis can be broadly classified as i) Preprocessing ii) Segmentation iii) 

Classification. Preprocessing of heart sound involves identification of the type of noise underlying the 

signal and methods used to contain them by means of cancellation or averaging. Preprocessing is an 

important stage because the sound components responsible for false detection of diseases during 

pathology screening is virtually eliminated.  The Segmentation of heart sounds follows the 

preprocessing stage. Segmentation of heart sounds helps us to identify the first heart sound (S1) 

and the second heart sound (S2). We can also identify the systole and the diastole. Segmentation 

gives clear idea about the start and stop instants of various heart sound components including 

murmurs. A single segmented PCG cycle can further be classified as normal or abnormal sound 

by means of the classification process. Classification is done by comparing the various features 

of heart sound with that of the features of the sounds in the reference database. Various 

supervised and unsupervised classification techniques are mentioned in Literature which have 

their own merits and demerits. Both methods require standard sets of features for detection of 

pathology in patients. Feature extraction stage is a prerequisite for accurate classification of 

PCG signals. 

2.2 Literature Survey and Gaps present 

In 1816 Laennec was the first to hear human Heart sounds. He did so by placing an end of the 

paper roll directly over the chest of the patient and the other end to his ears. This paved way 

for the phonocardiography and the actual analysis of heart sound. The initial work on heart 

sounds included recording of heart sound and processing of heart sound. This was followed by 

segmentation of heart sound for detecting the presence of S1, S2 sounds, systole-diastole 

duration, heart rate calculation etc. Then the last step included extra heart sound feature 

extraction and classification.  

2.2.1 Pre-Processing Heart Sounds Using Noise Filtering.  

a. Adaptive filters. 

In 1996 three researchers Tinati, M.A., Bouzerdoum & A Mazumdar J [120] used LMS based 
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modified Adaptive Line Enhancement Filter (ALE) for containing the noise present in the Heart 

Sound Noise. In this method adaptive filters were used for filtering the heart sounds which 

consisted of a convolved noise component. The ALE method did not estimate any kind of noise 

but relied on the deconvolution of noise embedded in the actual signal. The deconvolution 

resulted in the noise free heart sound suitable for further processing. The main principle behind 

deconvolution in ALE is reduction of minimum mean square error to the lowest possible level 

by proper adjustments of the weights of the LMS filter, so as to obtain a very clean signal. The 

minimum mean square error is estimated taking the square root of the mean differences 

between the noise corrupted heart sound and the de-noised heart sound. Since then, LMS-ALE 

filters and their adaptations have been frequently used de-noise heart sounds. Many other works 

have also been reported in Literature regarding the use of the Adaptive filters for noise 

reduction in PCG signals [70-72] 

b. Statistical filters. 

To contain noise in the PCG signals the reduced-order Kalman filter was also used [121]. The 

first order method that uses Gauss–Markov process is utilized to convert the model into state-

space. The optimal mean square of the heart sound was obtained by application of the Kalman 

filter. The major disadvantage of this method was, it used segmentation for identification of 

cardiac cycle. Identification of cardiac cycle by segmentation is quite inaccurate in the presence 

of high amount of background noise.  

c. Time frequency techniques. 

Spectral subtraction method [122] is a stationary method that is used to contain Additive White 

Gaussian Noise (AWGN) in PCG signals. This method failed in non-stationary noise 

conditions which was a major drawback in PCG de-noising since real time noise is not 

controlled and is usually non-stationary. In 2011, Ramos et al. [123] used modulation filtering 

method for heart sound noise reduction. Using a single channel of PCG signal they separated 

out the heart sounds and the redundant noise.  The STFT was used to obtain the amplitude of 

the heart sound. Coherent demodulation was performed on the amplitude of the STFT to 

separate out the carriers and the modulators. The noises were filtered by using the filter-bank 

on the modulators. The filtered modulators were then combined with carriers to reconstruct the 

original signal. They obtained a high sensitivity of 93.6% and a specificity of 92.3% 

respectively. 
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d.  Wavelet techniques. 

The discrete wavelet transform is another popular method of de-noising PCG. Discrete wavelet 

transform has many advantages compared to its counterpart, the STFT. It uses a time varying 

window for de-noising and removes both the non-stationary and stationary noises with good 

accuracy. For heart sounds, Wavelet de-noising technique has been proposed by Gyanaparva 

et al. (2013) [73]. This method used a novel wavelet-based coefficient threshold technique for 

noise reduction. This method solves the problem of using discontinuous hard-threshold 

function and the problem of permanent bias in soft-threshold function by selecting a suitable 

adaptive threshold. This method reduced the noises effectively in fetal heart sounds [73].  

e. Cycle-Frequency Domain Techniques 

Cyclic stationarity is an important property of heart sounds. Based on Nonlinear Scaling in 

time domain, Tang et al. (2016) [92] proposed a method to reduce noise and disturbances in 

Heart Sounds. A piecewise linear function was used to estimate the nonlinear time scale. Clean 

heart sounds were thus obtained in the presence of zero mean additive noises and disturbances.  

Later, Tang et al. (2016) [124] used a Fuzzy detection method for de-noising the PCG. They 

used PCG signal properties such as the time delay, the frequency, the amplitude, the time width, 

and the phase in this process. On subsequent analysis of the PCG signals it was observed that 

the cardiac components of the PCG clustered or congregated in the joint domains while noise 

did not cluster or congregate. Experiments conducted on PCG signals showed that heart sound 

signal components were made from lung sounds and chest motion artefacts. This was evident 

from the computer simulations that showed a fully reconstructed heart sound signal. The 

process however did not affect both the waveform and time delay of PCG signal. The 

similarities of the reconstructed and noise-free PCG signal were compared using correlation 

and normal residue parameters. Ten cardiac cycles were used for evaluation in 0dB noise 

environment. Using this data, they obtained a Correlation coefficient more than 0.90 and 

normalized residue up to 0.10. 

2.2.2 Segmentation of PCG.  

The PCG signal consists of two important sounds namely the first cardiac sound S1 and second 

cardiac sound S2 which are the first and second sounds respectively. Segmentation of the 

cardiac sounds help identify the systole or diastole. The closure of the AV valves triggers the 
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onset of the first cardiac sound S1. The closure of the Semilunar valves triggers the onset of 

the second heart sound.  

The rule to find the start and stop of the timing of S1 and S2 is as follows.  

1) The S1 begins when the mitral valves close. 

2) The S2 begins when the aortic valves close.  

3) The end of the S1 and S2 is triggered by some other high frequency vibrations 

(Moukadem et al. 2013) [51]. 

Methods of Cardiac segmentation are of four types. They are categorized as methods based on 

the shape of the envelope, type of the feature, type of Machine Learning (ML) technique and 

Hidden Markov Model (HMM) principle. 

a.  Envelope-based methods 

Envelope based method uses PCG envelope extraction for segmentation of PCG signals. In a 

first, in 1997, Liang et al proposed an envelope based method using the normalized average 

Shannon energy and then he segmented the heart sounds using this envelope.  This method 

gave emphasis to the medium-intensity heart sounds and reduced the low-intensity noise 

components. A total of 37 recordings contained 515 cycles. They were obtained from children 

with murmurs. With this method he obtained 93% accuracy. Later, Liang et al. (1997) [75] also 

employed wavelet decomposition for heart sound segmentation. The heart sounds were 

subdivided into four partitions namely S1, systole, S2 and diastole. He used a dataset of 77 

noisy PCG recordings that had in it 1165 cardiac cycles of heart sounds. Using his method, he 

obtained a sufficient accuracy of 84% (without using the wavelet decomposition) and 93% 

(with using the wavelet decomposition).  

Later in 2013, Moukadem et al. [51] obtained the of the S-transform of the heart sound signal 

and then estimated its Shannon energy envelope. 40 normal cardiac sounds and 40 pathological 

cardiac sound were used and thus obtained a sensitivity and positive predictive value of higher 

than 95%. 

Sun et al. 2014 [76] used Hilbert transform for heart sound segmentation. This method was 

divided into two parts. As a first part, he decimated the real part of the complex analytic signal 



11 

 

and obtained its envelope. As a second part he calculated the derivative of the imaginary part 

of complex analytic signal and obtained the Instantaneous frequency. For segmenting the PCG 

they considered the peaks of S1, the peaks of S2, the transmission points T12 from S1 to S2, 

and the transmission points T21 from S2 to S1. They used 7730s recordings from abnormal 

patients, 600s recordings from normal subjects, and 1496.8s recordings from Michigan 

MHSDB database. S1 and S2 without separation gave an average accuracy of 96.69%. and for 

sounds with separation gave an average accuracy of 97.37%.  

In 2006 Jiang et.al [77] developed a new waveform based method of PCG segmentation called 

as the Cardiac Sound Characteristic Waveform (CSCW) method. This method was tested 

against Shannon energy method and Hilbert transform method. It was found that the CSCW 

method was more superior to both of these methods. CSCW method gave a considerably high 

accuracy of 100% and sensitivity of 88.2% respectively. While Shannon energy method gave 

an accuracy of 78.2% and sensitivity of 89.4% and Hilbert transform method gave an accuracy 

of 51.4% and sensitivity of 47.3%. However, the three methods were tested only on 500 

selected cardiac cycles.  

In 2010 Yan et al.  [78] used characteristic moment waveform envelope method for PCG 

segmentation. With a small dataset of only 9 heart sound recordings they obtained a very high 

accuracy of over 99.0%. 

Ari et al. 2008 [79] proposed a simple squared-energy envelope extraction method. To evaluate 

the heart sounds, frequency, energy and timing of PCG signal components were used. They 

employed a threshold-based detection method for detecting heart sound components. The 

method outperformed Shannon energy envelope method in terms of performance. From 71 

recordings on a total of 357 cycles they obtained an accuracy of 97.47%. 

b. Feature-based methods 

In 2013, Naseri and Homaeinezhad, [80] developed a PCG segmentation algorithm that used 

synthetic decision making method. In this method they used frequency and amplitude based 

features of 52 PCG signals taken from patients suffering from different valve diseases. An 

average of 99.00% sensitivity and 98.60% positive predictive value was obtained. 

In 2006, Kumar et al. [81] developed a PCG segmentation method that used features from high 

frequencies of PCG. They obtained fast wavelet decomposition based features from the PCG 



12 

 

signal and then tested them on patients with native and prosthetic heart valves. These features 

showed profound pressure differences in both cases. The method was later tested on two classes 

of patients namely one with mechanical and bio-prosthetic heart valve implants and other, the 

patients with native valves. Thus an average of 97.95% sensitivity and of 98.20% positive 

predictive value was found with this method. 

In 2014, Varghees et.al, [82] developed a PCG segmentation algorithm using an instantaneous 

phase feature based method. They calculated the Shannon entropy and used analytic features 

for segmenting the PCG. No look-back steps were used. The method was tested on 701 cycles 

of clean and noisy PCG signals. A high sensitivity of over 99.43% and positive predictive value 

of over 93.56% was obtained during experiments.  

In 2014 Pedrosa et al. [83] developed a PCG segmentation algorithm in which they used the 

analysis signal of the autocorrelation function. These periodic features were later used to 

segment the PCG. The method was tested on a dataset of 72 PCG recordings.  89.2% sensitivity 

and 98.6% positive predictive value was obtained. 

Nigam and Priemer, 2005 [84] used complexity feature of the heart sound dynamics to perform 

PCG. Good performance was obtained on the synthetic data. They used amplitude and 

frequency based features for segmenting the PCG.  

Vepa et al. 2008 [85] developed a PCG segmentation algorithm by using the complexity-based 

features. These features were obtained by combining the energy-based and simplicity-based 

features of the PCG signal. They were obtained from the multi-level wavelet decomposition 

coefficients extracted from the PCG signal. On experimental evaluation on a dataset consisting 

of 166 cardiac cycles they achieved an accuracy of 84.0%. 

Papadaniil et.al 2014 [86] segmented the PCG signals by extracting the kurtosis-based features 

from the heart sounds. These features combined with different non-Gaussian intrinsic mode 

functions extracted from ensemble empirical mode decomposition were used for cardiac 

segmentation. The start positions and end positions of heart sounds were marked using the 

intrinsic mode functions. They obtained an accuracy of 83.05% for 11 normal patients and 32 

abnormal patients.  

Gharehbaghi et al. 2011 [87] introduced an ECG based cardiac segmentation method for 

pediatric patients. The dataset of 120 sounds of normal and pathological children, with 1976 
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cardiac cycles were used. They obtained an accuracy of 97% for S1 and 94% for S2. 

c. Machine Learning based methods 

In 2002, Oskiper and Watrous, 2002 [88] introduced a method of PCG segmentation for S1 

detection by using Time Delay Neural Network. Time-delay links were used to connect to the 

time-frequency Morlet wavelet decomposition energy coefficients. On 30 normal subjects they 

obtained an accuracy as high as 96.2%.  

Sepehri et al. 2010 [89], devised a PCG segmentation method by using a neural network 

classifier called as Multi-Layer Perceptron Neural Network (MLPNN). With 40 normal and 80 

abnormal recordings of children they obtained an accuracy of 93.6%.  

Chen et al., 2009 [90], developed a PCG segmentation algorithm to identify the various heart 

sound components. They clustered the sounds by employing K-means and segmented the PCG 

using a threshold based method. A high 92.1% sensitivity and a 88.4% positive predictive value 

was obtained for 27 recordings of healthy subjects.  

Gupta et al. 2007 [91], extracted a single cardiac cycle from the PCG signal. Then they 

clustered the PCG by K-means and segmented using Homomorphic Filtering (HF). For a total 

of 340 cycles an accuracy of 90.29%. was obtained.  

Tang et al. 2010, [92], segmented the PCG signal by using dynamic clustering. The PCG signal 

was first decomposed into cardiac cycles by frequency. Each cardiac cycle was clustered and 

grouped into two classes either a S1 or a S2. On 25 subjects, 94.9% accuracy was obtained for 

S1 and 95.9% for S2. 

Rajan et al. 2006 [93], introduced SVD and Morlet wavelet decomposition based PCG 

segmentation. A singular value decomposition technique (SVD) was used on Morlet features 

to identify heart sound segments. On 42 adult patients 90.5% accuracy was obtained. 

d. HMM based methods 

In 2003, Gamero et.al developed a PCG segmentation algorithm by using a probabilistic finite 

state-machine model and applied it to PCG [94]. They used a network of two HMMs with 

grammar constraints on the sequence of systole and diastole. Experiments were evaluated for 

over 80 subjects. Promising results with 95% sensitivity and 97%. positive predictivity was 
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obtained. 

In 2005, Ricke et al. [95], developed a PCG segmentation algorithm based on HMM method. 

They achieved a high 98% accuracy with eight-fold cross-validation but the method was tested 

only on 9 subjects.  

Gill et al. 2005 [96], developed a PCG segmentation algorithm in which he incorporated the 

timing durations within the HMM. Homomorphic filtering followed by feature extraction was 

performed. The extracted features were used with GMM. The method was validated on 44 PCG 

recordings obtained from over 17 subjects. S1 sounds showed a high sensitivity of 98.6% and 

high positive predictive values of 96.9%, while S2 sounds showed high sensitivity of 98.3% 

and high positive predictive values 96.5%.  

In 2014, Sedighian et al. [97] introduced a method to segment PCG by using Homomorphic 

filtering and an HMM. They used PASCAL database for testing. S1 sounds showed a high 

accuracy of 92.4% and while S2 sounds showed an accuracy of 93.5%.  

Castro et al. 2013 [98], developed a PCG segmentation algorithm by using the wavelet analysis 

on the PASCAL database. S1 sounds showed a high accuracy of 90.9% and while S2 sounds 

showed an accuracy of 93.3%.  

In 2010 Schmidt et. al [99] developed a PCG segmentation algorithm by using the hidden semi-

Markov model (HSMM). The S1 and S2 sounds in 113 recordings, were hand labelled first.  

Gaussian distributions were derived from the average duration of the sounds and 

autocorrelation analysis of systole and diastole. Later, by using the homomorphic envelope and 

three frequency band features of 25–50, 50–100 and 100–150 Hz the Gaussian distribution-

based emission probabilities for the HMM were found. The frequency features were used with 

Viterbi algorithm to label the states. Using this method, they obtained 98.8% sensitivity and 

98.6% positive predictive value.  

In 2016 Springer et al. [100] developed a PCG segmentation algorithm by using HSMM 

method and logistic regressions and applied it to the noisy, real-world heart sound recordings. 

They also developed a modified Viterbi algorithm in order to identify the sequence of states of 

the sounds. 10 172s recordings from 112 patients were used for testing. An average F1 score 

of 95.63% was obtained which was significantly higher compared to the highest score of 

86.28% reported from other methods. 
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2.2.3. PCG feature extraction and Classification.  

The heart sounds can be classified based on pathology. The normal heart sound is free of extra 

sounds, but abnormal heart sounds contain extra sounds such as murmurs and clicks. From the 

past 50 years, several developments have taken place in the automated classification of heart 

sounds for pathology. As early as 1963, in a first, Gerbarg et al. [101] worked on the techniques 

for automated heart sound classification. The work was reported on children suffering from 

Rheumatic Heart Disease (RHD) by using a threshold based method. The PCG classification 

can be grouped into four categories namely Artificial Neural Network (ANN), Support Vector 

Machine (SVM), Hidden Markov Model (HMM) and clustering based approach. 

a.  Classification based on ANN 

The ANN classifiers use features of the PCG signal as inputs. Some of them are wavelet, time, 

frequency and complexity and time-frequency features. The most popular features used with 

ANN are the Wavelet-based features.  

Akay et al.1994 [102], performed automated analysis of heart sounds by using wavelet based 

features alongside an ANN. From the diastole they computed four features namely mean, 

variance, skewness and kurtosis using the coefficients of wavelet. Along with these features, 

they fed the physical characteristics such as sex, age, weight, blood pressure into a fuzzy neural 

network. On 82 recordings a sensitivity of 85% and a specificity of 89% was reported.  

In 1998 Liang et.al [103], developed a decomposition method based on wavelet packet for heart 

sound classification. They used this method to differentiate the pathological murmurs from the 

innocent murmurs in children. Using the information-based cost function eight nodes of the 

wavelet packet tree were selected. The values of the cost function were used as the feature 

vector. They achieved 80% sensitivity and 90% specificity on the dataset with a 65/20 train/test 

split.  

In 2012, Uguz [104], used discrete wavelet transform features and a fuzzy logic approach along 

with ANN. He classified the PCG into three classes namely normal, pulmonary stenosis, and 

mitral stenosis. For 120 subjects a 50/50 train/test split was used. With this amount of data, he 

achieved 100% sensitivity, 95.24% specificity, and 98.33%.  

In 2005, Bhatikar et al. [105], devised a classification algorithm for the PCG by estimating the 
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features of energy spectrum obtained from FFT. The features were fed as inputs to an ANN. 

To evaluate the performance, experiments were performed on 53 patients using a separate test 

set consisting of innocent and pathological murmurs. With all of these data, they reported 83% 

sensitivity and 90% specificity.  

Sepehri et al. 2008 [106] classified the PCG by using ANN to identified the five frequency 

bands. The frequency bands with the greatest difference in spectral energy was used to identify 

normal and pathological heart sounds. 95% sensitivity and 93.33% specificity were obtained 

for 50 sounds.  

Ahlstrom et al. 2006 [107], developed a classification algorithm for the murmurs by using the 

non-linear complexity-based features. They identified 14 features out of 207 available features 

and presented them to an ANN. 86% accuracy was obtained for normal sounds and sounds of 

AS and MR.  

In 2007 De Vos and Blanckenberg [108], obtained a different time-frequency based features 

with 12 frequency bins and 10 time intervals and presented it to an ANN. The method was 

tested on 163 test patients. 90% sensitivity and 96.5% specificity was obtained.  

In 2012, Uguz [109] introduced a classification method that used the time-frequency based 

features and an ANN for classification. 90.48% sensitivity, 97.44% specificity and 95% 

accuracy was obtained for 120 PCG signals with 50-50 test-train split. 

b. Support vector machine-based classification 

Ari et al. (2010) [110], classified the PCG signal by using a Least Square SVM (LSSVM). 

They used this method of classification to identify normal and abnormal heart sounds. 64 

recordings of normal and pathological sounds were used to evaluate the proposed method. They 

used LSSVM on 32 patients with 50/50 split and obtained an 86.72% accuracy.  

Zheng et al. 2015 [111], classified the PCG signal by clubbing heart sounds wavelet packets 

energy fraction and sample entropy features along with SVM. The method was tested on a 

dataset of 40 normal and 67 pathological patients. 97.17% accuracy, 93.48% sensitivity and 

98.55% specificity was reported.  

Patidar et al. 2015 [112], developed a classification algorithm for PCG by feeding the Tunable-

Q Wavelet Transform features. They used these features as an input to LSSVM with varying 
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kernel functions. They used a dataset of 163 heart sound recordings with a total of 4628 cycles.  

98.8% sensitivity and 99.3% specificity was obtained.  

Maglogiannis et al. 2009 [113], developed a classification algorithm for the PCG by feeding 

the Shannon energy and frequency features. They were obtained from four frequency bands 

(50–250, 100–300, 150–350, 200–400 Hz) of the heart sound. These features are used as inputs 

to an SVM classifier. They used a dataset containing 38 normal and 160 heart valve disease 

sounds. 87.5% sensitivity, 94.74% specificity and 91.43% accuracy was reported.  

Gharehbaghi et al. 2015 [114], developed a classification algorithm for the PCG by using 

frequency band power features during systole over varying length frames. Growing-Time SVM 

(GTSVM) classifier was used for classification. They used a dataset containing 50-50 train-

test split data from 30 patients with Aortic Stenosis (AS), 26 with innocent murmurs and 30 

normal. With all of this data and features, they reported 86.4% sensitivity and 89.3% 

specificity. 

c. HMM-based classification 

In this type of pathology classification, the posterior probability of the heart sound signals or 

the extracted features can be used to differentiate between healthy and pathological recordings 

using a given trained HMM.  

Wang et al. 2007 [115], used a mixture of HMM and Mel-Frequency Cepstral Coefficients 

(MFCCs) for heart sound classification. The feature vector was obtained from time-domain 

features, short-time Fourier transforms (STFT) and MFCCs. The method was tested on 20 

normal and 21 abnormal heart sounds with murmurs. With this, they obtained a sensitivity of 

95.2% and a specificity of 95.3%. In this method, MFCCs is used to extract the various features 

as inputs to the HMM-based classifier for heart sound classification. They used a dataset 

containing 1381 cycles of normal and pathological heart sounds. 99.21% accuracy was 

obtained.  

Saracoglu et al. 2012 [116], applied a HMM to the frequency spectrum extracted from entire 

heart cycles. They trained four HMMs, then estimated the posterior probability of the features, 

optimized the HMM parameters and PCA-based feature selection on the training set. They used 

a dataset of 60 PCG recordings. 95% sensitivity, 98.8% specificity and 97.5% accuracy was 

reported.  
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d. Clustering-based classification 

In 1998, Bentley et al. [117], used DWT features alongside kNN classifier and showed that 

DWT features outperformed morphological based features. 100% and 87% accuracy was 

reported when detecting pathology in patients with heart valve and prosthetic heart valves 

respectively for database whose size was not specified.  

Quiceno-Manrique et al 2010 [118], combined simple kNN classifier with features from 

various time-frequency representations. The method was tested on a subset of 16 normal and 6 

pathological patients (22 recordings). With this, they reported 98% accuracy for normal and 

pathologic beats.  

In 2010, Avendano-Valencia et al. [119], developed a classification algorithm using time-

frequency features and kNN. He used this algorithm for classifying the status of the heart sound 

as normal and murmur. To reduce the dimension of the data they used Linear decomposition, 

and tiling partition of the time-frequency plane methods. 26 normal and 19 pathological 

recordings were used and an accuracy of 99.0% was reported using 11-fold cross-validation.  

2.3 Scope of the thesis 

Computer Aided Diagnosis of heart sounds includes the following steps namely, Pre-

processing, Segmentation and Classification. 

Pre-processing: It is used to assess the signal quality, filter out baseline changes and high 

frequency noises and extract relevant features. Section 2.2 lists some of the methods mentioned 

in literature to remove the noise from heart sound. Adaptive filter based method was able to 

remove only a small amount of background noise. Any further changes and modification in the 

filter design to remove noise resulted in loss of signal coefficients, which itself imposes some 

limitations for the method. Modulation filtering technique [123] and Wavelet filtering using 

decomposition [73] have addressed this problem.  One of the drawback of these methods is that 

their efficiency to give a noise less filtered heart sound signal is greatly effected in cases of 

abnormal heart sounds where murmurs interfere with lung sound frequencies.  Further Wavelet 

filtering using decomposition would lead to loss of important medical information related 

wavelet coefficients. So the effectiveness of the algorithm is reduced far too much when 

compared to Modulation filtering. Reduced Kalman filter [121] also failed to remove the noise 

under low SNR conditions. This method relied heavily on Segmentation of heart sound for 
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extraction of cardiac cycles under low SNR conditions. Spectral subtraction method [122] for 

heart sound de-noising created problems of musical noise during noise reduction. Spectral 

Subtraction method used activity detection to estimate the noise. Activity detection method is 

usually suitable under stationary noise conditions. Estimation and reduction of Non-stationary 

noises using [122] resulted in residual noise (musical noise). So these methods suffered 

miserably under Non-stationary conditions.  Tang [92] in his work Non-linear time scaling in 

cycle frequency domain used the timings of heart sounds and murmurs to aligned them from 

one cycle to next cycle. Noise and disturbance were subsequently reduced by averaging. The 

algorithm’s performance degraded, if segmentation was inaccurate, or if the assumption that 

heart sounds were consistent in consecutive cycles is not valid. To overcome this problem, 

Tang [124] proposed another method of de-noising heart sound using fuzzy detection in joint 

frequency-time-frequency domain. As noise level was increased the performance of this 

method degraded. It was noted, however, that the correlation coefficients obtained with this 

method were not significantly higher than those obtained with previous method [92] in higher 

noise. The reason behind this performance may be that atoms of heart sound signal are diluted 

on the joint plane due to the presence of excessive noise.  

Segmentation: Segmentation plays a vital role in heart sound analysis as it is used to delineate 

the start and end of each phase of the heart beat (S1, systolic, S2, diastolic). Section 2.2 

discusses some of prominent segmentation methods in literature. Envelope based methods used 

envelopes of the heart sound for segmentation. The methods relied on threshold for delineating 

the S1 and S2. Since it was difficult to set the threshold for various types of noises and levels, 

these methods failed miserably. Liang et al. [75] used Wavelet based segmentation method for 

delineating PCG signals. Wavelet filters used to contain noises resulted in loss of important 

Wavelet signal information during reconstruction. So the accuracy reduced greatly. Moukadem 

et al. [51] used Shannon entropy over S-Transform of the PCG signals to segment the heart 

sound. High accuracy was obtained for a small dataset. Sun et al [76] used Hilbert transform 

method to identify and delineate the heart sound signals. They used Shannon entropy to identify 

the transmission points of S1-S2 and S2-S1. The threshold was fixed empirically. However, 

the analysis was done under high signal to noise ratio conditions. Jiang and Choi [77] used a 

new CSCW based envelope extraction method. The method obtained good results compared to 

Hilbert transform method. But this method was evaluated only for 500 cardiac cycles. Ari et al 

[79] used simple Squared energy envelope extraction method. Though the performance of this 

method bettered than that of Shannon Entropy method under the presence of noise the method 
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showed poor performance. Features based methods used different heart sound features for 

segmentation. Feature extraction under the influence of noises and disturbances was difficult 

and the sound had to be de-noised effectively to remove the redundant noise. The number of 

features used also accounted for the segmentation accuracy. Naseri et.al [80] used frequency 

and amplitude based features, for PCG segmentation. Though the method was effective in 

segmenting all sounds, it was tested on a small database of 55 sounds. Kumar et al. used 

Wavelets based high frequency based feature extraction method. Though the method 

performed appropriately well, it was tested only on certain heart disorders involving bi-

prosthetic valves. Varghees and Ramachandran, [82] used an instantaneous phase feature based 

extraction method. The method assumed that noise did not affect the phase of the PCG signal. 

So filtering was required to uncover the signal from noise in order to identify the correct phase 

of the PCG signal.  Inadequate filtering resulted in false segmentation. Nigam et.al, [84] 

segmented the PCG by using complexity of the PCG. Using dynamic features such as 

amplitude and frequency they obtained fairly good accuracy. But the method suffered 

miserably under low SNR conditions. Vepa et al. [85]   also used complexity-based features 

extracted from Wavelet coefficients. Though the method performed better compared to 

previous method, it was tested only on a small dataset.  Papadaniil et.al [86] segmented the 

PCG by using kurtosis-based features with ensemble empirical mode decomposition. Though 

the method yielded high performance compared to the previous methods, it was tested only on 

a small dataset. Gharehbaghi et al [87] used an ECG-referred PCG segmentation method for 

pediatric patients. This method was validated only for a small set of infant database. Machine 

learning methods discussed in section 2.2 used small database for segmentation.  Methods 

involving artificial neural networks took more computation time for training. The accuracy of 

the algorithms also depended on the number of sounds used. Oskiper et.al, [88], used a time-

delay neural network method for PCG segmentation. Fairly good accuracy was obtained but 

only for a small database of sounds.  Sepehri at al [89] used MLPNN to segment the heart 

sounds. The method was tested only on a database of infant heart sounds, but with a good 

accuracy. Chen et al., [90], used a K-means clustering and a threshold method for segmenting 

heart sound. Clustering of sounds was greatly influenced by noise presence. So heavy filtering 

of sounds was necessary. Inaccurate de-noising and bad threshold resulted in poor 

segmentation. Gupta et al.  [91], segmented heart sounds by K-means clustering and

homomorphic filtering method. Though the method removed murmurs and segmented S1 and 

S2 effectively, the evaluation of the method was done on a small dataset of sounds.  Tang et al. 

[92], employed dynamic clustering for segmenting heart sounds. Even in this method noise 
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greatly influenced the detection of S1 and S2 sounds. Identification of S1 and S2 had to be 

preceded by suitable pre-processing techniques for optimum noise removal. Residual noise 

greatly affected the clustering of S1 and S2 sounds. Rajan at al. [93] used Morlet Wavelet 

transform method to feature extract S1 and S2 sounds and SVD method to segment them. The 

detection of S1 and S2 sounds boundaries were influenced by noise and led to inaccurate 

segmentation. This reduced the accuracy of the method. Methods using HMM also took more 

computational time for training for a larger database. Some of the methods required external 

reference signal such as ECG or carotid pulse for segmentation. Gamero et.al [94] used a 

HMMs with grammar constraints to segment the PCG. It was the first method using HMM and 

was tested only on a small dataset of heart sounds. Rickie et al [95] used HMM method for 

heart sound segmentation with cross validation. However, the method was tested only on 9 

subjects, that too only on adults. Gill et al [96] also used HMM method along with 

homomorphic filtering for segmenting heart sounds. However, this method too was evaluated 

on a small dataset. Sedhigian et al [97] also used HMM method with homomorphic filtering 

on a different database. The performance however degraded with noise. Castro et al. [98] used 

Wavelet based features with HMM to segment heart sounds. They used same database but 

failed to achieve good results on a noisy dataset. Schmidt et al [99] used HSMM technique to 

segment the heart sound. However, the algorithm was trained to detect heart sounds taken from 

Michigen HSDB. The algorithm did not perform well on real time noisy heart sounds. Springer 

et al [100] used HSMM method along with logistic regression to segment the heart sound. 

However, the algorithm was trained to detect heart sounds taken from MITHSDB. The 

performance of algorithm was appreciable in case of real world noisy heart sounds. 

Classification: Four types of classification methods are discussed in section 2.2. Classification 

by ANN provided lesser than 85% accuracy. Also the accuracy depended on number of features 

and type of features used. Akay et al [102] used ANN with wavelet based features and obtained 

an average accuracy of 85% which is far less compared with the current state of the art 

classification accuracy.  Liang and Hartimo [103] used Wavelet Packet Tree along with ANN 

for heart sound classification and obtained an accuracy of 85% which is lower compared to the 

current state of the art methods. Uguz et al [104] used ANN with DWT features and Fuzzy 

logic approach. However, the algorithm focused only on three classes of heart sounds namely 

Normal, Pulmonary stenosis, Mitral stenosis.   Bhatikar et al. [105], used the energy spectrum 

features of the Fast Fourier Transform (FFT) as inputs to an ANN. The method was tested on 

a small dataset of 50 patients and medium sensitivity of 83% was obtained. Sepehri et al.  [106] 
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used ANN to identified the five frequency bands with the greatest difference in spectral energy 

of normal and pathological heart sounds. Their method was also tested on only 50 heart sounds 

for only 2 classes of heart sounds. Ahlstrom et al. [107], used non-linear complexity-based 

features with ANN for murmur classification. They obtained lower classification accuracy of 

80% for only 2 categories of heart sound. De Vos et.al [108], used time-frequency features 

with ANN. With few features they obtained high accuracy, but only for lesser number of 

sounds. Later Uguz [109] also used time-frequency features as an input to an ANN. They 

obtained a high accuracy, but only for 120 sounds. SVMs are the most popular and prominent 

of the methods discussed in Section 2.2. However, similar to ANN the accuracy depends on 

the number of features and type of features used. Also of the SVM methods discussed in section 

2.2 has been tested on a small database of heart sounds. And only a few SVM methods are 

automated. Ari et al. [110], used a Least Square SVM (LSSVM) method for PCG classification.

However, their method was restricted only to 50 sounds with accuracy of 86.72%. Zheng et al. 

2015 [111], used heart sounds wavelet packets energy fraction and sample entropy features for 

the SVM. They obtained a high accuracy of 97.17% on 107 sounds. Patidar et al.  [112], used 

the Tunable-Q Wavelet Transform features and LSSVM for PCG classification.  They obtained 

a high accuracy for a small dataset of only 163 sounds. Maglogiannis et al. 2009 [113], used 

Shannon energy and frequency features with SVM classifier. They obtained a high accuracy of 

91.43% for 198 sounds. Gharehbaghi et al. [114], used frequency band power and GTSVM to

classify PCG. They obtained a high accuracy for a very small dataset of 56 sounds. 

Classification by HMM provides good accuracy. However, classification depends on posteriori 

probability of Heart sound or its features. Also the accuracy depends on the number and type 

of features used. Wang et al. 2007 [115], classified the PCG by using a mixture of HMM and 

MFCCs. They obtained high accuracy for a dataset of only 41 normal and abnormal sounds. 

Saracoglu et al. [116], applied a HMM to the frequency spectrum extracted from entire heart 

cycles. They obtained a modestly high accuracy of 97.5% for 60 heart sound recordings. 

Clustering based methods discussed in section 2.2 is completely unsupervised type of 

classification. K Means algorithm is the most popular type of clustering algorithm. However 

most of the works related to K Means algorithm has been tested on a smaller database. Bentley 

et al. [117], used DWT features alongside kNN classifier and showed that DWT features 

outperformed morphological based features. They obtained a very high accuracy for an 

unknown sized dataset. Quiceno-Manrique et al [118], used a combination of simple kNN 

classifier with time-frequency features. They obtained a high accuracy for a small number of 

22 sounds. Avendano-Valencia et al. [119], also employed time-frequency features and kNN 
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approach for classifying normal and murmur patients. A very high accuracy of 99% was 

achieved for only 45 normal and pathological sounds. 

 

2.4 Motivation for the Present Work 
 

Based upon the objectives and signal processing techniques of the aforementioned methods, 

and our preliminary results, the motivations for the present work are as follows. 

 

• The ECG reference based segmentation methods can achieve better detection of instances of 

S1 and S2 components in the PCG signal under varying durations of S1 and S2 sounds, and 

systole and diastole intervals. But ensuring the accurate detection of the R-peak and end-T- 

wave is one of the major problems in the presence of time-varying PQRST morphologies, low-

amplitude T waves, and various kinds of noise and artefacts. 

However, these methods demand additional ECG sensing hardware requirements. 

• Although identification of fundamental heart sounds (S1 and S2) is simple, it becomes more 

complicated when the PCG recordings include other physiological sounds and noise sources. 

Results showed that the segmentation performance was degraded in the presence of heart 

murmurs and high pitched sounds such as clicks, snaps and gallops. 

• Most methods mainly focus on segmentation of PCG signal into four components: S1- 

systole-S2-diastole, while only very few methods have been presented for detection of S3 and 

S4. In pathological cases, the extra sounds including clicks, snaps, rubs and various kinds of 

systolic and diastolic murmurs (including, early, mid, late, and pan) may occur between the 

two loudest sounds S1 and S2. Most clinical studies show that different types of abnormal 

sounds and murmurs are often characterized by using their morphological parameters including 

timing, duration, intensity, frequency content, and configuration. 

• Existing methods use many search-back algorithms with multiple amplitude-dependent, 

duration-dependent and cycle period-dependent thresholds for rejecting or including the noise 

segments and missing sound segments. These methods may have poor performance in detection 

and quantitative measurement of early, mid, late, pan systolic and diastolic murmurs and other 

high pitched sounds. 

Various studies show that the segmentation performance should be further investigated and 

improved under the influence of abnormal heart sounds (S1, S2, S3, and S4) and murmurs, 

irregular heart rates and background noise sources. Further, determination of boundaries and 

peaks of low-amplitude heart sounds and murmurs are still in research. Clinical studies 
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highlight the need for accurate and robust generalized PCG waveform delineation and

parameter extraction framework for effective screening and diagnostic of different kinds of 

heart defects. To the best of our knowledge, there is no systematic framework for automatically 

determining the peaks and boundaries of physiological sounds such as heart sounds (S1, S2, 

S3, and S4), heart systolic and diastolic murmurs (early, mid, late, and pan), and high-pitched 

sounds.

2.5 Objectives of The Work

Figure 2.4.1 Block diagram of Automated analysis of heart sound.

Pre-processing of heart sound 

To solve the issues of related to de-noising, an approach based on block threshold method 

in time frequency domain is investigated.  

Section 2.3 discusses the various methods used for de-noising of PCG signals. In those methods 

there is no explicit description about estimation of the noise. Most of the methods rely on 

empirical methods to cancel or reduce noise. There are very few instances of usage of Time-

Frequency methods for noise removal. Since PCG signals are non-stationary in nature, TF 

methods give better visualization of sounds than other methods mentioned in section 2.3. We 

propose to de-noise the PCG signals using time frequency block threshold method and compare 

the results with other time methods namely soft threshold, overlapping group shrinkage and 

wavelet coefficient threshold techniques. The noise can be either stationary or non-stationary. 

To estimate stationary noise, activity detection is used. To estimate non-stationary noise, 

improved minimum controlled recursive averaging method is used. The estimated noise is 

reduced to the lowest possible residual value using time frequency block threshold method. 

Step 1 Pre-

processing
Step 2 

Segmentation

Step 3 

Classification

Heart

Sound

Recordings

Clinical

Applications
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So a new approach involving bark spectrogram technique is proposed which will segment 

heart sounds with murmurs without using any form of threshold.

Section 2.3 discusses the popular segmentation methods mentioned in Literature. Most of the 

methods are threshold based and susceptible to noise. Since perfect noise removal is not 

researched yet, we devise an algorithm to segment the de-noised sound using the concept of 

bark spectrogram which is immune to small residual noises. We have tried to assess the 

performance of Segmentation after pre-processing the PCG signal corrupted with stationary 

and non-stationary noises. We have compared the performance evaluation of the segmentation 

algorithm using bark spectrogram with other popular algorithm namely Homomorphic 

filtering. Cardiac cycles are extracted from the segmented sounds, with each cycle consisting 

of a single S1, systole, S2 and diastole. The cardiac cycle is used for classification of heart 

sounds in the next stage of CAD.

Heart sound Feature extraction and Classification

For heart sound classification problem, we investigate the feasibility of using the Loudness 

features extracted from spectrogram. Loudness based features are clustered using GMM.

Section 2.3 discusses the popular Classification methods mentioned in Literature. We have 

created a dataset of normal and abnormal heart sounds during the process of cardiac cycle 

extraction. There is a collection of 3239 sounds from both datasets. The spectrogram is 

evaluated for each sounds, from which Loudness function is calculated empirically by row-

sum of the spectral values. The mean and standard deviation this Loudness function has been

evaluated to categorize heart sounds into normal and abnormal. The Loudness features have 

been found using these two parameters namely mean and standard deviation. GMM is used to 

cluster the loudness features of the heart sound. This method is compared with other clustering

methods, namely K Means and Fuzzy C Means method.

2.6 Database

Heart sounds present in the Physionet MITHSDB [22] is used widely by researchers for heart

sound analysis. MITHSDB is obtained from normal and pathological patients worldwide. The 

training set has five databases (A through E) with over 3000 PCG recordings. The duration of 

each PCG varies from 5 seconds to 120 seconds. The heart sound recordings were obtained 

from aortic area, pulmonic area, tricuspid area and mitral area. Abnormal heart sounds were

Segmentation of heart sound 



26 

 

obtained from patients with a confirmed cardiac diagnosis such as mitral valve prolapse, mitral 

regurgitation, aortic stenosis and valvular surgery. Recordings included both children and 

adults. Each patient has contributed from one to six heart sound recordings. All recordings are 

sampled at 2,000 Hz and are in .wav format. 

2.7 Popular Segmentation algorithms from Literature 

The following table gives a comparison of the popular segmentation algorithms mentioned in 

literature. 

Authors and the database used   Performance 

Metrics 

Observations 

Liang et.al (1997), 37 recordings (515 cycles) from 

children with murmurs (14 being pathological) 

 

93.0% Ac Unsupervised, 

optimised on entire 

dataset 

Liang et.al (1997), 77 (1165 cycles) recordings 

from children with both pathological and 

physiological murmurs 

 

94.6% Ac Unsupervised, 

optimised on entire 

dataset 

Sun et.al (2014), 55 recordings (7530 cycles), 51 

with valve replacements 

  

97.95% Se, 98.2% Sp  

 

Unsupervised, 

optimised on entire 

dataset 

Ari et.al (2008), 71 recordings (357 cycles), nine 

different pathologies 

 

97.47% Ac No splits between 

train and test 

Vepa et.al (2008), 166 clean heart cycles from 

normal and pathological patients 

 

84.0% Ac Unsupervised, no 

stated segmentation 

tolerance 

Gupta et.al (2007),  41 recordings (340 cycles). 90.29% Ac Unsupervised 
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Mix of normal (32%), systolic (36%) and diastolic 

murmurs (32%)

Chen et al (2009), 27 recordings of 30 s (997 

cycles) from healthy subjects

92.1% Se, 88.4% P+ Unsupervised

Oskiper and Watrous (2002), 30 clean recordings 

(20 s) from healthy subjects 

96.2% Ac No split between 

train test set

Gharebhaghi et al (2011), 120 recordings from 

children, 80 with congenital heart disease (totaling 

1200 s, 823 cycles in test set)

93.6% Ac on test set 50% test train set

Yan et.al (2010), Nine recordings (less than 5 s). 55% pathological 

99.0% Ac on whole 

cycle detection

No split between 

train test set

Gill et.al (2011), 9426.8 s of recordings, normal 

(22.2%) and various pathologies (ASD, PDA, 

VSD, and RHD)

S1 : 98.53% Ac, S2 : 

98.31% Ac, Cycles: 

97.37% Ac

Unsupervised, no 

stated segmentation 

tolerance

Gamero and Watrous (2003), 80 recordings from 

an unknown number of patients of 6–12 s (40 

healthy, 40 pathological recordings)

96% and 97% Se, 95% 

and 95% P+ (healthy 

and pathological)

No split between 

train test set, no 

stated segmentation 

tolerance

Tang et.al (2010), 26 clean recordings (565 cycles), 

3 healthy subjects, and 23 with various pathologies

94.9% and 95.9% Ac 

(S1 and S2 )

No split between 

train test set and no 

stated segmentation 

tolerance

Naseri and Homaeinezhad (2013), 50 2-min 99.0% Se and 98.6% No split between 
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healthy and pathological recordings P+ train test set and 

segmentation  

reported on 20% 

dataset

Varghees and Ramachandran (2014), 64 teaching 

quality recordings of less than 10 s (701 cycles). 

Various pathologies

93.06% Ac, 99.43% 

Se. 93.56% P+

No split between 

train test set and 

segmentation 

reported on partial 

dataset, no stated 

segmentation 

tolerance

Springer et.al (2016), 10 172 s of PCG recorded 

from 112 patients

F1 score of 

95.63±0.85%

Large dataset, Uses 

ECG reference

Shervegar and Bhat (2017), 10 172 s of PCG 

recorded from 112 patients

Accuracy of 96.56% Large dataset, No 

ECG and no noise 

threshold

Table 2.6.1 Popular Segmentation Algorithms from Literature

2.8 Popular Classification algorithms from Literature

The following table gives a comparison of the popular classification algorithms mentioned in 

literature.

Author Database Record

ing 

length

Classific

ation 

method

Features Se (%) Sp (%) Acc (%) Notes 

Uguz (2012a) 40 normal,  40 

pulmonary and  40 

mitral stenosis

- ANN Wavelet; 

Large 

number of 

features 

(>2)

100 95.24 98.33 50-50 train-

test split; No 

cross 

validation; 

small 

database; No 

dimension 

reduction 
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Uguz (2012b) 40 normal,  40 

pulmonary and  40 

mitral stenosis

- ANN Time-

Frequency; 

Large 

number of 

features 

(>2)

90.48 97.44 95 50-50 train-

test splits; No 

cross 

validation; 

small 

database; No 

dimension 

reduction

Ari et.al (2010) 64 patients (normal 

and pathological)

Each 8 

cycles

SVM Wavelet; 

No of 

features=1

00

- - 86.72 50-50 train-

test splits; No 

cross 

validation; 

Medium 

accuracy; No 

dimension 

reduction

Zheng et.al 

(2015)

40 normal and  67 

pathological

- SVM Wavelet; 

No of 

features=2

50

93.48 98.55 97.17 Cross-

Validation; 

No effective 

splitting of 

dataset 

Patidar et.al 

(2015)

Total 4628 heart 

cycles, 626 normal 

and 4002 

pathological

- SVM Wavelet; 

No of 

features=1

80

98.8 99.3 98.9 80% training 

20% test; No 

cross 

validation

Gharehbaghi 

et al (2015)

30 normal,  26 

innocent  and 30 AS

Each 10s SVM Frequency; 

No of 

features=2

5

86.4 89.3 - 50-50 train-

test split; No

cross

validation

Sarcoghlu et.al 

(2012)

40 normal,  40 

pulmonary and  40 

mitral stenosis

- HMM DFT and 

PCA

95 98.8 97.5 50-50 train-

test split

Quiceno-

Manrique et al 

(2010)

16 normal and  6 

pathological

- kNN Time-

Frequency; 

No of 

- - 98 Cross-

Validation



30

features 

not 

specified

Avendano-

Valencia et al 

(2010)

26 normal and  19 

pathological

- kNN Time-

Frequency; 

No of 

features 

not 

specified

99.56 98.45 99.0 Cross-

Validation

Karar et al 

(2017)

3 sets for normal 

healthy heart and 19 

sets represent three 

cases of heart 

abnormalities 4, 10, 

and 5 datasets for 

AS, AI, and VSD, 

respectively.

- SVM Maximum 

Lyapunov 

Exponents

N:100

VSD: 80

AS:100

AI: 100

N:100

VSD:100

AS: 100

AI: 91.67

N: 100

VSD:

95.45

AS: 100

AI: 95.45 

Small 

database;

No train-test 

split 

specified.

Cross 

validation

Shervegar and 

Bhat (2017)

3000 sounds both 

normal and 

Pathological

3-50 GMM Loudness 

Index; No 

of 

features=2

100 100 100 Large 

database; 50-

50 training 

and test split

Table 2.6.2 Popular Classification Algorithms from Literature
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2.9 The thesis Organization

Chapter 1 gives an introduction to Phonocardiography and heart sounds. It discusses the variety 

of heart sounds that can be acquired from patients suffering from different heart ailments. The 

chapter also focusses on the clinical parameters used to identify and diagnose the diseases.

Chapter 2 gives an overview of prominent and present methodologies from literature used to 

for heard sound analysis. Based on the literature survey the problem identification, scope of the 

thesis and objectives of the work is presented. The chapter also gives details of the database 

used in this work.

Chapter 3 stresses the need for Pre-processing of heart sounds by de-noising. The chapter 

highlights the popular Discrete Wavelet Transform based de-noising procedure. The chapter 

also introduces the application of time frequency method of heart sound de-noising using 

Block threshold, Overlapping Group Shrinkage and Soft threshold methods. The chapter 

focusses on the performance of these algorithms and its influence on the Segmentation of the 

heart sounds under de-noised conditions.

Chapter 4 describes the popular and recent segmentation algorithm mentioned in Literature

namely, Homomorphic Filtering. The chapter introduces the new novel low pass filtered Event 

Synchronous Segmentation and CWT filtered Event Synchronous Segmentation methods. The 

chapter mentions about the performance of these three algorithms for the given database under 

the influence of noises and murmurs.

Chapter 5 identifies the features present in the heart sound and classifiers for classification of 

these features. The chapter focusses on obtaining Loudness features from heart sound using 

Spectrogram. The chapter also discusses the various classifiers available from Literature for 

Clustering the heart sounds namely, K Means Classifier, Fuzzy C Means Classifier and 

Gaussian Mixture Model Classifier. The chapter also discusses the performance of these three 

classifiers for Loudness features extracted from de-noised heart sound. 

Finally, Chapter 6 gives the concluding remarks and the future directions. 
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Chapter 3 

De-noising of Phonocardiograms using Time Frequency methods 

The heart sounds contain various types of frequency components like the S1, S2 (in normal 

PCG) and S3, S4, murmurs (in abnormal PCG). In spite of the advancements in modern medical 

equipment such as digital stethoscopes contamination of the acquired heart sounds with noise 

in realistic environment cannot be ruled out. Thus it becomes important to take care of this 

aspect during the design of heart sound analysis techniques. To study the nature of the de-

noising algorithms, the noisy heart sounds present in the database are preprocessed using 

Wavelet threshold method. This makes the PCG more robust, where robustness refers to high 

quality of the PCG in terms of high Signal to Noise Ratio and audibility of the PCG in presence 

of artefacts and disturbing noises in the raw signal, which often hinder the process of cardiac 

auscultation.  

To evaluate the de-noising performance noises are infused purposefully into the heart sounds 

which were earlier pre-processed using Wavelet threshold method. Additive White Gaussian 

Noise (stationary noise) and Exponential Noise (non-stationary noise) estimation and reduction 

is the focus of our study.  

Section 2.2.1 gives details about different methods that have been evaluated in literature for 

removal of noise in PCG of which Wavelet and Time Frequency methods are the most popular. 

In this chapter adaptation and evaluation of PCG de-noising using time-frequency block 

threshold (TFBT) method is investigated, further the results obtained from the proposed TFBT 

method is compared with Time Frequency methods namely, Overlapping Group Shrinkage 

(OGS) [136] and Soft Threshold method [136]. These PCG de-noising methods are explained 

in the subsequent sub sections and their performance under the influence of stationary noise 

and non-stationary noise have been studied. 

Noise Estimation plays an important role in PCG enhancement. A low noise estimate results in 

annoying residual noise in the signal and high noise estimate will result in distorted or loss in 

intelligibility. The focus of this part of the work lies in correct estimate of the noise in the 

underlying signal and further reduction of these noises using various noise reduction methods. 

We have also implemented the wavelet filtering of PCG using the raw sounds, followed by 

Block threshold method, on the de-noised dataset to obtain the new de-noised dataset. Block 

threshold algorithm has been used for its better performance compared to other methods such 

as OGS and ST in terms of SNR and SSNR.  
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3.1 De-noising of Phonocardiograms using Wavelets 

3.1.1 Wavelet Threshold De-noising 

 
For wavelet de-noising noise signals are assumed to be high frequency signals. Information 

bearing signals like Phonocardiograms appear as either low frequency or more smooth signals. 

To de-noise noisy Phonocardiogram signals, usually, one dimensional signal de-noising 

procedure is followed. One dimensional signal de-noising process includes the following: the 

one dimensional signal is decomposed by wavelet decomposition, a fixed threshold is selected 

and threshold function is then used to remove the noises which are in high frequency and the 

one dimensional signal is then reconstructed. Various factors such as the de-noising threshold 

and the selection of threshold function influence the quality of de-noising. 

3.1.2 Wavelet Threshold Function  

In classical threshold methods, the decomposition coefficients with values lesser than the 

threshold are zeroed and those decomposition coefficients with values greater than the threshold 

are retained [137]. The local properties of the signal are not changed. The inherent discontinuity 

in the signal creates certain fluctuations during the reconstruction of the original signal.  

Consider 

                                              NO�P����� Q RNS�P�%%%%%%%%TNS�P%T U VW�%%%%%%%%%%%TNS�P%T X VY                                                 (3.1.1) 

Above certain threshold, the soft threshold function zeros the decomposition coefficient. 

However, a part of the high frequency coefficients above the threshold is lost [137]. 

 Consider 

                                               NO�P����� Q ZNS�P [ VNS�P �%%%%%%%%%%%TNS�P%T U VW�%%%%%%%%%%%%%%%%%%%%%%%%%%%%TNS�P%T X V\                               (3.1.2)  

parameter ����%represents the estimated wavelet coefficients. Parameter ���� represents wavelet 

coefficients after decomposition. �%represent threshold.   

3.2 Experimental Evaluation of Wavelet threshold on 

PCG. 

The noisy heart sound data in Physionet database contains either/both stationary and non-

stationary noises. To eliminate the presence of noise the heart sounds were subjected to wavelet 

coefficient threshold method. On the noisy data the wavelet coefficients were calculated using 
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different wavelets for different decomposition levels. First the sounds were corrupted with 

stationary AWGN. Wavelet threshold was applied to the noise. The threshold was estimated as 

follows. There are fixed and variable thresholds. [137]. The fixed threshold is most commonly 

used. Its expression is � Q 	
]^�_�, 	
 is the noise standard variance, and � is the length of 

the signal. DWT performed poorly under low SNR but improves steadily as noise level drops. 

Soft threshold provides the best de-noising performance compared to hard threshold for an 8th 

level decomposition using db10 mother wavelet. Appropriate wavelet and decomposition level 

was chosen considering the high SNR and morphological similarity of the wavelet with heart 

sound signal. Optimum de-noising requires selection of appropriate decomposition levels and 

appropriate wavelets. Since noise itself is variable and cannot be controlled, tuning the number 

of decomposition levels and type of wavelets becomes difficult for all noise levels. As a second 

step, de-noising of heart sound using time frequency method such as Block threshold method 

requires tuning only the window duration. Even though Block Threshold methods require noise 

estimation algorithms for estimation of noise variance, selection of time window for greater 

range of noise levels is easier. Figure 3.2.1 shows a 2 sec duration of a normal sound. The first 

pane shows the normal raw sound with many noise peaks in the systole and the diastole. The 

second pane shows the heart sound obtained by filtering the raw sound. The de-noised sound 

shows many peaks which remain even after wavelet filtering. The residual noises are shown by 

the dark circles. To remove such redundant noises time frequency block threshold method is 

applied. The effect of stationary and nonstationary noises and the significance of the time 

frequency Block threshold method to remove redundant noises are discussed in the next 

subsection. 

 

Figure 3.2.1 Normal Heart sound (pane1) and Wavelet de-noised Heart sound (pane 2), noise shown in dark circles. (X axis-time (s) and 

Y axis -Amplitude (V). 
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3.3 De-noising using Time frequency block threshold 

algorithm 

3.3.1 Activity Detection 

Activity detection (AD) is a procedure used to identify biomedical signal frames (such as heart 

sounds) and noise frames. In most of the conventional AD algorithms the background noises 

are stationary over a longer stretch than those of signal. This makes it possible to estimate the 

time varying noises even during the presence of signal [125]. Some decision rules are used to 

determine the presence or absence of biomedical signal by comparing the observed signal 

statistics in the current frame the estimated noise statistics. We need to minimize misdetections 

at weak speech components. So a hang-over scheme is used to modify this initial decision. It is 

difficult to optimize the relevant parameters as traditional AD algorithms are usually designed 

using heuristics. Recently, statistical model has been used to optimize an AD [126]. Maximum 

likelihood (ML) criterion is used to estimate the unknown parameters. We use these parameters 

and make a decision using the likelihood ratio test (LRT). The decision-directed (DD) method 

is used to optimize the decision rule [127]. To optimize the algorithm, we use HMM based 

Hang-over scheme [128]. Since HS is also a Nonlinear and non-stationary biomedical signal, 

we have applied DD method based and HMM based hang-over scheme for detecting stationary 

noises in the heart sound. 

 

Input: A noisy heart sound.  

Output: The standard deviation of the noise, sigma. 

Steps: 

1. Initialize the parameter for AD: threshold for log-likelihood th=0.1, hamming 

window duration w_dur=0.05s, hop duration h_dur=0.025s, no. of initial noise 

frames num_noise=20; No of FFT points N_FFT=sampling frequency, fs (=2000) 

*w_dur. 

2. Set the Markov Parameters for Hang Over Scheme: a01=0.5, a10=0.1, a00=1-a01, 

a11=1-a10. Set coefficient of DD SNR estimation, � Q `abba Set HMM based HS 

detection probability, 
���� Q c. 

3. Obtain the noisy HS by selecting a HS from the dataset and corrupting it with various 
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levels of random noises from -5dB to 15dB. 

4. Follow the steps given below to estimate stationary noise (random) noise in the HS 

using AD. 

5. In AD, the first few HS frames are supposed to contain noise only frames 

(num_noise=20). Calculate the noise variance (�) for these frames and find the 

average value. 

6. Divide the HS signal into signal frames n by windowing using Hamming window. 

Calculate the frame variance (d* of each such signal frames. 

7. Follow the steps given below to estimate the noise variance of the stationary noise in 

the entire signal. Repeat the following steps for 10 iterations. 

8. Calculate the posteriori SNR (�) by taking the ratio of frame variance to noise 

variance. First 20 frames contain only noises. So frame variance equals noise 

variance and � = 1. 

9. Since priori SNR (��* is unknown its estimate is found using the following recursion. e� Q %f g (h [ f*(i [ h*, n = 1;                                                      (3.1.3) 

e� Q %f jk(;lh*V(;lh* g (h [ f*(i [ h*, ; m h;                                          (3.1.4) 

M�(_ [ c* is the amplitude estimate of the previous (n-1) frame and �(_ [ c* is the 

noise variance of the previous frame. 

10. Calculate the parameter n Q o�2p�qo�  and nonlinear Gain function  

%%%%%%%%%%%%%%%%%rk(; [ h* Q ]st u]vi w xyzulvt w {(h g v*|W uvtw g v|h uvtw}.                    (3.1.5) 

�� and ��%are modified Bessel functions of zero and first order. 

11. Estimate the amplitude of the (n-1) frame by multiplying the nonlinear gain function 

with the spectrum of the signal frame. Also estimate noise variance 

                               V(; [ h* Q ~<� u e�hqe�w g e�2ihqe�                                                 (3.1.6) 

and find the mean value by average with no. of FFT points. 

12. Estimate the weights  

                                              � Q% V>�@;hqV>�@;%%%%                                                      (3.1.7)  

and update  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%V(;* Q � 2 V(; [ h* g (h [ �*�a                               (3.1.8) 

13. Find the absolute sum of the difference of  �(_*%4_�%�(_ [ c*. If the difference is 
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less than 0.000001 stop the iteration. 

14. Calculate the HMM based HS detection probability 

                                                 r Q %@Whq@hh2r�<~�@WWq@hW2r�<~� V>�@;.                                   (3.1.9) 

Update 
���� Q 
 and calculate log maximum likelihood 

                                    B�B Q h���� ��>(i [ ���(i* [ h*.                                     (3.1.10) 

15. Classify the signal frame as noise frame if  
 is less than threshold th or n is less than 

20, else classify the signal frame as HS frame. 

 

3.3.2 Improved Minimum Controlled Recursive Averaging 

(IMCRA) 

Non Stationary and low SNR Noise spectrum estimation methods use reliable and fast tracking 

of variations in the noise. Activity Detector (AD) based methods depend on the heart sound 

absence. It is difficult to use AD for tuning weak signal components and signals with low input 

SNR, [129], [130], [131]. Other methods like Power spectral domain based Histograms 

techniques [132], [133], [134], are computationally expensive. They require more memory 

resources, and do not perform well in low SNR conditions. Also, the signal segments needed 

to build the histograms are in the order of several hundred milliseconds. To overcome this 

problem improved minima controlled recursive averaging (IMCRA) method was proposed by 

Cohen [136]. He adjusted the signal presence probability and obtained the noise estimate. He used 

a smoothing parameter and averaged past spectral power values. The signal presence probability 

depended on the minima values of the periodogram. To estimate noise using IMCRA he 

followed a two-step procedure that included smoothing and minimum tracking. In the first step 

rough activity detection was used in each frequency band. In the next step, Smoothing was used 

to exclude relatively strong signal components making noise estimation robust. IMCRA is used 

to estimate non stationary noise.  

The algorithm for IMCRA is stated as follows: 

Input: A noisy heart sound. 

Output: The standard deviation of the noise sigma. 

Steps: 
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1. Initialize the variables at the first frame of all frequency bins k: instantaneous

noise spectrum estimate ���()� `* Q Hd()� `*H�, mean noise spectrum

estimate ���()� `* Q Hd()� `*H� , posteriori SNR �()� `*=1, Smoothed

Spectrogram minimum from first iteration �� 
()� `* Q %��()� `*, Smoothed

Spectrogram from first iteration �()� `* Q %��()� `*, Smoothed Spectrogram

from second iteration �!()� `* Q %��()� `*, conditional gain 
��()� `* Q c,

Smoothed Spectrogram minimum from second iteration �!� 
()� `* Q��()� `*, first Smoothed Spectrogram running minimum �"#$%�&'()� `* Q��()� `*, second Smoothed Spectrogram running minimum �!"#$%�&'()� `* Q��()� `*.

2. Initialize the counter for frames, j=0.

3. For all time frames � and frequency frames ) repeat the steps that follow.

4. Compute the posteriori SNR �()� �* using

i(P� ~* Q % H�(P�~*HtV��(P�~* (3.1.11)

priori SNR

e�(P� ~* Q fr�ht (P� ~ [ h*i(P� ~ [ h* g (h [ f*>@:%(i(P� ~* [ h� W* (3.1.12)

and 

r�h(P� ~* Q % e�(P�~*hqe�(P�~* �:�%(ht � ��??�v(P�~* �?* (3.1.13)

where � is a weighting factor (for a priori SNR estimation) that controls the 

tradeoff between noise reduction and speech distortion,%
��()� �* is the

spectral gain function of the Log-Spectral Amplitude (LSA) estimator when 

speech is surely present and 

%v(P� ~* Q e�(P�~*hqe�(P�~* i(P� ~*. (3.1.14)

5. Compute the first iteration of the smoothed power spectrum of �()� �* using

time-frequency smoothing. In frequency, we use a window function b whose
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length is 2w +1: 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%�A(P� ~* Q � �(�*���l� H�(P [ h� ~*Ht.                               (3.1.15) 

In time, the smoothing is performed by a first order recursive averaging, given 

by  

%%%%%%%%%%%%%%%%%%%%%%%%�(P� ~* Q %f��(P� ~ [ h* g (h [ f�*�A(P� ~*.                            (3.1.16) 

The running minimum 

 %%%%%%%%%%%%%%%%%%%%%%%�>�;(P� ~* Q >�;%(�>�;(P� ~ [ h*� �(P� ~**                                  (3.1.17) 

and  

%%%%%%%%%%%%%%%%%%%%%%%%�>�;%���(P� W* Q >�;%(�>�;%���(P� W*� �(P� ~**                             (3.1.18) 

are updated. 

6. Based on the first iteration smoothing and minimum tracking, the rough 

decision about HS presence using the indicator function �()� �* for AD is 

obtained. It follows [13] that there exists a constant factor C� 
 , independent 

of the noise power spectrum, such that  

%%%%%%%%%%%%%%%%%%%%%%%%%%%���>�;(P� ~*Te�(P� ~* Q W� Q �>�;lh V��(P� ~*.                                   (3.1.19)  

The factor C� 
%represents the bias of a minimum noise estimate. We 

calculate 

                                         i>�;(P� ~* Q H�(P�~*Ht�>�;�>�;(P�~*                                       (3.1.20) 

 and recursive average of the a priori SNR,  

                                        �(P� ~* Q �(P�~*�>�;�>�;(P�~*.                                             (3.1.21)  

  The indicator function is given by 

  |(P� ~* Q �h%%%%%%%%%%%%%%%%%%%%%%%%%%�A%i>�;(P� ~* X i(P� W*%@;�%�(P� ~* X �(P� W*%W%%%%%%%%%%%%%%%%%%%%%%%%%%%<? �=����%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
                                  (3.1.22) 
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7. Compute the second iteration of the smoothed power spectrum of �!()� �*a In

frequency, we use a window function b whose length is 2w +1:

�¡A(P� ~*
Q Z� (�(�*���l� |(P [ h� ~*H�(P [ h� ~*Ht*t� (�(�*���l� |(P [ h� ~* %�A%i>�;(P� ~* X i(P� W*%@;�%�(P� ~* X �(P� W*H�(P [ h� ~*Ht% %¢? �=����%%%%%%

(3.1.23)

Smoothing in time is given, as before, by a first-order recursive averaging:

�¡(P� ~* Q %f��¡(P� ~ [ h* g (h [ f�*�¡A(P� ~*. (3.1.24)

The running minimum

�¡>�;(P� ~* Q £¤¥%(�¡>�;(P� ~ [ h*� �¡(P� ~** (3.1.25)

And

�¡£¤¥%���(P� ~* Q £¤¥%(�¡£¤¥%���(P� ~ [ h*,%�¦(P� ~* (3.1.26)

are updated.

8. Compute the a priori signal absence probability

§̈(P� ~* Q
%© %h% %�A%ï>�;(P� ~* ª h%@;�%�¡(P� ~* X % �Wihlï>�;(P�~*ihlh %%%%%%%�A%h ª % ï>�;(P� ~* X ih%W% %<? �=����%%%%%%

(3.1.27)

5«6L¬«���%�� Q [ ­®¯(°�* Q 1� L8-L67±L_54��²%°�(Q `a`3* ³°%(Q `a`c*, a priori signal presence probability,

�̈(P� ~* Q ´h g §(P�~*hl§(P�~* uh g e�(P� ~*w �:�%(v(P� ~**µlh (3.1.28)

and time varying frequency dependent parameter:

f̈� Q %f� g (h [% %f�*�̈(P� ~* (3.1.29)
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where smoothing parameter%(L8-L67±L_54��²%�� Q `a¶3*%�7L¬%7_%%%%%` X�� X c, 

9. Update the noise spectrum estimate: 

 V��(P� ~ g h* Q % f̈�(V��(P� ~** g (h [ f̈�*H�(P� W*Ht*                                    (3.1.30) 

 and mean noise spectrum estimate: 

 V��(P� ~ g h* Q %· 2 V��(P� ~ g h*                               (3.1.31) 

where . compensates the bias when signal is absent. 

 

3.3.3 Block threshold method 

This work discusses, time-frequency block threshold method for heart sound de-noising. This 

method utilizes a Fourier coefficient matrix filter that is used to de-noise the heart sound. 

Ordinary filtering using Wiener filter creates artefacts called musical noise. To prevent such 

artefacts, a non-diagonal processing like a block threshold method is needed. Block threshold 

algorithm parameters are chosen carefully to reduce the risk involved in Stein estimation. 

Numerical experiments demonstrate the performance and robustness of this procedure. 

 

Input: Noisy heart sound signal with noise sigma estimated from section 3.3.1 or 3.3.2 

Output: The de-noised heart sound. 

Steps: 

1. First the STFT (¸ 2 ¹*% of the heart sound signal using 50ms time duration hanning 

window. 

2. Initialize Attenuation factor matrix AttenFactorMap, Flag depth Flagdepth and 

thresholded coefficient matrix STFTcoefth to zero. 

3. Create a 1 2 3%�%/45678º 
%%%%%%%%%%%%%%%%�V Q %»ha ¼ ha ½ tha ½ t ta ¼t ta ¼ ¾a ¼

ta ¼ ta ¼¾a ¼ ¾a ¼¿a À ¿a ÀÁ.                                                      (3.1.32)  

4. SURE Matrix of size = (1 2 3) is initialized to zero.  

5. Start at time 1 and frequency -1. 
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6. For every block 1 to Z/8 loop over time do:

7. For zero frequency deal with block 12 ¶:

8. Compute Attenuation coefficient,@� Q h [ he�qh (3.1.33)

where 

%e� Q �Â�tÃÂ�t (3.1.34)

and d� �%is the empirical mean on the block i and place it in AttenFactorMap. Place 

the block 12 ¶ (subdivision) in Flagdepth. 

9. For each Macroblock in negative frequencies do:

10. For each subdivision do.

11. Compute the Risk:

ÄkP Q Ãt(�PÅ g Vt�PÅltV��PÅlt��Ã h�ÆVÃt g �PÅ u�Ã [ tw h�ÇVÃt*.   (3.1.35)

This formula gives the estimation of the risk of the block i of size B#
i

12. Store the result in the corresponding subdivision of SURE matrix.

13. end

14. Find the minimum of SURE and the matched subdivision.

15. For each mini block of this optimal subdivision do

16. Compute 4 as in step 8 and store it in right place in AttenFactorMap.

17. Store the subdivision in Flagdepth.

18. end

19. end

20. For last block not Full in frequency do

21. Do the same as zero frequency.

22. end

23. For last block not Full in time and frequency do

24. Do hard thresholding

25. end

26. end

27. For positive frequencies conjugate the results from negative frequencies.

28. Find the thresholded coefficient matrix:����È<�A?  Q ����È<�A 2 j??�;�@É?<=�@�.  (3.1.36)
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29. Weiner filter this result.

30. Invert the STFT to obtain the reconstructed signal.

3.4 Comparison of TFBT with OGS and ST de-noising 

algorithm 

3.4.1 Overlapping group Shrinkage algorithm

Bio-signals 8 are not only sparse but also exhibit a inter and intra scale clustering property. 

Likewise, the clustering/grouping property is also apparent in a typical heart sound

spectrogram. In both cases, significant (large-amplitude) values of 8%tend not to be isolated. In 

this work simple translation-invariant shrinkage algorithm is discussed. The algorithm

minimizes the cost function with the penalty where the set J defines the group. To de-noise, we 

discuss a simple method to set the regularization parameter lambda similar to the ‘three-sigma’

rule. The method allows for lambda to be selected so as to ensure that the noise variance is 

reduced to a specified fraction of its original value. This method does not aim to minimize the 

mean square error or any other measure involving the signal to be estimated, and is thus non-

Bayesian. The method for setting lambda is analytically intractable due to the absence of the 

estimator. However, with appropriate pre-computation, the method can be implemented by 

table look-up. To avoid musical noise, the clustering behaviour of STFT coefficients of heart 

sound waveforms have been considered. The parameter lambda is used to reduce the penalty 

function such that the noise component of the signal is reduced to a smallest possible value.

The variance of the signal is given by 	Ê�(Ë* Q ^(c g Ë�*Ì(Ë* [ ËÍ�Î ÏÐÑ%([ ÒÓ� *, where 

Ì(Ë* Q ��Î � LlÔÓÕ��5 Q `a3(c [ ÏÖ×%( Ò]�*�Ò ).

Input: Noisy heart sound signal with noise sigma estimated from section 3.3.1 or 3.3.2

Output: The de-noised heart sound.

Steps:

1. Initialize the vector 8 to zero, and assign the input ² to 8.

2. Index 7 takes values from 0 to N-1 and 8(7* m `a
3. Repeat the following steps:

4. The penalty function,  9(8*, is chosen to promote the known behavior of x.

Ä(:* Q =(�* Q %� {� H:(� [ S g PHt}ØP�h htØS�h , � Q {W�Ù a a Ø [ h}, (3.1.37)
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with K being group/block size. 

5. Estimate :(�* Q % Ú(�*hqV=(�*                                                                                    (3.1.38) 

until convergence, where � is the regularization parameter. The parameter � is fixed 

as per table 3.4.1. 

Output Standard deviation Ã: 

       Group hWlt hWl¾ hWl¿ hWl¼ h 2 h 3.36 4.38 5.24 6.00 h 2 t 1.69 (1.73) 2.15 (2.24) 2.38 (2.67) 2.46 (2.94) h 2 ¾ 1.16 (1.18) 1.46 (1.52) 1.60 (1.77) 1.64 (1.99) h 2 ¿ 0.89 (0.91) 1.12 (1.16) 1.23 (1.36) 1.27 (1.53) h 2 ¼ 0.73 (0.75) 0.92 (0.95) 1.01 (1.12) 1.04 (1.25) t 2 t 0.86 (0.87) 1.08 (1.33) 1.19 (1.31) 1.23 (1.48) t 2 ¾ 0.59 (0.67) 0.74 (0.77) 0.80 (0.89) 0.82 (1.01) t 2 ¿ 0.46 (0.48) 0.57 (0.59) 0.62 (0.69) 0.64 (0.78) t 2 ¼ 0.38 (0.41) 0.46 (0.49) 0.51 (0.57) 0.52 (0.64) ¾ 2 ¾ 0.41 (0.43) 0.50 (0.53) 0.55 (0.61) 0.56 (0.69) ¾ 2 ¿ 0.33 (0.35) 0.39 (0.42) 0.43 (0.48) 0.44 (0.54) ¾ 2 ¼ 0.29 (0.31) 0.32 (0.36) 0.35 (0.40) 0.36 (0.45) ¿ 2 ¿ 0.27 (0.30) 0.30 (0.34) 0.33 (0.38) 0.34 (0.43) ¿ 2 ¼ 0.24 (0.26) 0.26 (0.30) 0.27 (0.33) 0.28 (0.37) ¼ 2 ¼ 0.21 (0.23) 0.22 (0.26) 0.23 (0.29) 0.24 (0.32) t 2 ½ 0.28 (0.30) 0.31 (0.35) 0.33 (0.39) 0.35 (0.43) 
 

Table 3.4.1 Regularization parameter λ to achieve specified output standard deviation when OGS is 

applied to a real standard normal signal: full convergence-150 iterations (25 iterations). 

 
 

3.4.2 Soft Threshold Algorithm 

Soft threshold algorithm is a type of threshold algorithm in which the STFT/ wavelet 

coefficients that are below the soft threshold T are shrinked towards zero. The noisy signal 

used is simulated by adding independent white Gaussian noise with standard deviation σ = 

0.03. We use ‘3σ rule’ to contain noise using Soft threshold method. The ‘3σ rule’ states that 

nearly all values of a Gaussian random variable lie within three standard deviations of the mean 

(in fact, 99:7%). Hence, by using 3σ as a threshold with the soft threshold function, nearly all 

the noise will be eliminated with threshold T = 3σ = 0.09.  

 

Input: Noisy heart sound signal with noise sigma estimated from section 3.3.1 or 3.3.2 

Output: The de-noised heart sound. 

Steps: 

1. Initialize the vector 8 to zero. 
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2. Estimate x using the formula x = max(1 - T./abs(y), 0) .* y with T=3σ.

3. Estimate the inverse STFT to obtain the de-noised signal.

3.5 Block Threshold Algorithm-Results and Discussion

3.5.1 Performance Metrics 

To evaluate the performance of de-noising in Phonocardiograms using TFBT, OGS and BT 

methods the following performance metrics were evaluated.

Signal to Noise Ratio:     ��Ä Q hW~<�hW( � At{;}��h;ÛW� (A{;}lA¡{;}*t��h;ÛW * (3.1.41)

Segmental Signal to Noise Ratio: ���Ä Q h� � �(hW~<�hW( � AtÜ;Ý~�t Þ��h;ÛW� (AÜ;Ý~�t ÞlA¡Ü;Ý~�t Þ*t��h;ÛW *%�~�W *
(3.1.42)

Mean Square Error:      ��� Q h� � (�lh;�W A{;} [ A¡{;}*t (3.1.43)

3.5.2 Results from the experiments

The noisy heart sounds taken from Physionet Heart sound database containing 3239 sounds are 

Wavelet Filtered to remove most of the noises as discussed in Section 3.2. However not all 

noises get removed using this method and some residual noises still remain. So the residual 

noises could have detrimental effects in further processing of the cardiac sound signals. To 

remove such noises application of Time Frequency methods is proposed as a second stage of 

preprocessing following the Wavelet filtering technique as the first stage. To better visualize 

the effect of de-noising, we compare the signal plot vis-a-vis its time frequency (STFT) 

representation. To study the performance of Time Frequency methods in the de-noising of heart 

sounds, the noises are purposefully infused. The effect of two types of noises namely stationary 

noise -Additive White Gaussian Noise (AWGN) and Non-Stationary noise-exponential noise 

have been studied and results have been reported in the form of tables 3.5.1-3.5.4. Estimation 

of Stationary noise is done using Activity Detection, while Non-stationary noise is estimated

using IMCRA method. Figure 3.5.1 shows the time as well as STFT zoom plot of a single cycle 

of heart sound corrupted with exponential noise with 0.03 noise level (sigma). Figure 3.5.5 

shows the time and STFT plot of heart sound corrupted with random noise with 0.03 noise level 

(sigma). The fundamental heart sounds S1 and S2 are visible in the signal plot as well as STFT 

in both of these figures. The STFT is calculated with 50% overlapping blocks of length of 512 

samples for a sampling frequency of 2000Hz. Other block sizes may be suitable for other 

sampling frequencies. Figures 3.5.2 and 3.5.6 shows the noisy PCG signal subjected to Soft 
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threshold. The Noisy STFT is subjected to soft threshold with threshold parameter T selected 

so as to reduce the noise standard deviation down to 0.1% of its value such that noise is 

inaudible. The noise is sufficiently suppressed so that musical noise is not audible; however, 

the signal is distorted due to the relatively high threshold used. The signal is over-smoothened 

and spectrogram shows loss of vital information present in the signal. Figures 3.5.3 and 3.5.7 

show the application of OGS algorithm to the noisy STFT. HS signals were de-noised with OGS 

algorithm with various group sizes. A suitable group size - 8 * 2 (i.e., eight frequency bins * two 

time bins) is chosen based on the better de-noising effect. Other group sizes may be more 

appropriate for other sampling rates and STFT block lengths. As in the soft threshold 

experiment, the parameter λ was selected so as to reduce the noise standard deviation down to 

0.1% of its value. Regularization parameter λ was fixed as λ = 0.32σ as per table 3.4.1. The signal 

and STFT plots indicate that OGS algorithm removes more noise compared to Soft threshold 

method. As a next step, Block threshold algorithm is applied to the noisy STFT. Figures 3.5.4 

and 3.5.8 gives the signal and STFT plot of the noisy PCG signal subjected to TFBT method. 

Block size chosen was 3*5. Other block sizes are suitable for sounds with other sampling 

frequency. The signal and STFT plot indicate that TFBT method removes more noise compared 

to the other two methods. To better understand the effect of de-noising we refer to the tables 

3.5.1-3.5.4. 

Table 3.5.1 shows the de-noising metrics for random noise corrupted Normal PCG signal 

subjected to three different de-noising algorithms-ST, OGS and TFBT. The performance of de-

noising was measured in terms of Signal to Noise Ratio (SNR), Segmental-Signal to Noise 

Ratio (SSNR) and Mean Squared Error (MSE). For better de-noising effect, the PCG signals 

under study should have higher SNR and SSNR and lower MSE. For a noise level of 0.03 

(sigma), ST method showed 0.67 dB SNR, 0.03 dB SSNR and 0.004127 MSE. For the same 

noise level OGS method showed 1.48 dB SNR, 0.21 dB SSNR and 0.00329. OGS method 

showed better de-noising performance compared to ST method. The de-noising performance of 

BT algorithm was still better with 8.29 dB SNR, 3.10 dB SSNR and 0.000698 MSE. Table 3.5.2 

shows the de-noising performance of random noise corrupted Abnormal PCG signal. ST 

method showed SNR of 0.18, SSNR of 0.01 dB and MSE of 0.005349. OGS method showed 

SNR of 0.33 dB, SSNR of 0.02 dB and MSE of 0.005166, while BT method showed 8.28 dB 

SNR, 4.76 dB SSNR and 0.000819. Table 3.5.3 shows the de-noising of Normal PCG signal 

corrupted with exponential noise. The noise level was kept unchanged with 0.03 (sigma). The 

table indicates that ST method showed 5.43 dB SNR, 0.82 dB SSNR and 0.002 MSE. At the 
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same time OGS algorithm showed 7.54 dB SNR, 1.23 dB SSNR and 0.000897 MSE. Analysis 

of normal PCG corrupted with exponential noise showed 11.11 dB SNR, 5.13 dB SSNR and 

0.000427 MSE. Table 3.5.4 gives the de-noising mechanism of Abnormal PCG corrupted with 

exponential noise and subjected to de-noising algorithms. ST method showed 4.17 dB SNR, 

1.22 dB SSNR and 0.003306 MSE. Meanwhile, OGS method showed 5.51 dB SNR, 1.49 dB 

SSNR and 0.001589 MSE. Similarly, TFBT method 10.81 dB SNR, 7.04 dB SSNR and 

0.000468 MSE. 

Parameter  

(sigma = 

0.03) 

ST OGS BT 

SNR 0.67 1.48 8.29 

SSNR 0.03 0.21 3.10 

MSE 0.004127 0.00329 0.000698 

   

Table 3.5.1 De-noising Normal sounds for different methods (Stationary noise)  
 

Parameter  

(sigma = 

0.03) 

ST OGS BT 

SNR 0.18 0.33 8.28 

SSNR 0.01 0.02 4.76 

MSE 0.005349 0.005166 0.000819 

 

Table 3.5.2 De-noising Abnormal sounds for different methods (Stationary noise)   
   

Parameter  

(sigma = 

0.03) 

ST OGS BT 

SNR 5.43 7.54 11.11 

SSNR 0.82 1.23 5.13 

MSE 0.002 0.000897 0.000427 

 

 Table 3.5.3 De-noising Normal sounds for different methods (Non-stationary noise)  
 

Table 3.5.4 De-noising Abnormal sounds for different methods (Non Stationary noise) 

Parameter  

(sigma   = 

0.03) 

ST OGS BT 

SNR 4.17 5.51 10.81 

SSNR 1.22 1.49 7.04 

MSE 0.003306 0.001585 0.000468 
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Figure 3.5.1 Non stationary exponential noise corrupted heart sound

Figure 3.5.2 Soft thresholded heart sound under non stationary conditions

Figure 3.5.3 OGS thresholded heart sound under non stationary conditions

Figure 3.5.4 Block thresholded heart sound under non stationary conditions
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                              Figure 3.5.5 Noisy heart sound corrupted by random stationary noise 

 

 
 

                              Figure 3.5.6 Soft thresholded heart sound under stationary conditions 
 

 
 

                              Figure 3.5.7 OGS thresholded heart sound under stationary conditions 

 
                              Fig 3.5.8 Block thresholded heart sound under stationary conditions 
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3.5.3 Observations and Discussion 
 

From Table 3.5.1 it is clear that TFBT method outperformed the OGS and ST methods in terms 

of SNR, SSNR and MSE. There was good improvement in SNR and SSNR when TFBT method 

was used against ST method. This could be attributed to the efficient and robust noise removal 

in TFBT method when compared to some signal attenuation and distortion in ST method. The 

performance of OGS algorithm was in between that of ST method and TFBT method. This was 

a clear indication that OGS algorithm suffers less from distortion and attenuation as compared 

to ST method. However, some kind of residual noise still persists in OGS method that gets 

removed in TFBT method. Similar results are observed for Abnormal HS as shown in Table 

3.5.2. Table 3.5.3 shows the results obtained using application of Time-Frequency methods on 

Normal PCG signals corrupted by Non stationary noise.  Even here too, the TFBT method 

showed far better performance compared to its companion methods ST and OGS. One 

important observation that was noted in de-noising procedure adopted here, was that de-noising 

of non-stationary noise corrupted PCG signals yielded better results compared to stationary 

noise corrupted PCG signals. TFBT method removed non stationary noise more efficiently than 

stationary noise with respect to the companion methods. Similar results were obtained for 

Abnormal PCG signals corrupted with Non stationary noises as shown in Table 3.5.4. 
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Chapter 4 

Segmentation of Phonocardiogram 

Section 2.2 gives details about the different Segmentation techniques mentioned in Literature. 

Of the various segmentation techniques available today, the Shannon energy/ entropy envelope 

based techniques are the most popular and widely used. We have taken up the popular Shannon 

energy/entropy based Segmentation techniques namely Homomorphic Filtering (HF) and have 

evaluated the performance of these algorithms on a very large database of heart sounds hosted 

in Physionet repository.    

In this chapter, we introduce a new method of Segmentation using Bark Spectrogram called the 

Event Synchronous Heart Sound Segmentation. Two versions of the method are discussed 

namely, Band pass Filtered Event Synchronous method and Continuous Wavelet Transform 

(CWT) Filtered Event Synchronous methods. Later in the section we describe in detail as to 

how cardiac events can be detected using Loudness function extracted from Bark Spectrogram 

of a heart sound. We compare the performance of these method with other popular method in 

Literature namely the one that uses Homomorphic Filtering. 

4.1 Segmentation of Phonocardiograms using 

Homomorphic Filtering  

Homomorphic filtering based Segmentation of heart sounds are divided into three important 

stages namely Pre-processing, peak detection using Homomorphic filtering and Heart Sound 

Detection using detected peaks. The block diagram with five stages are shown below in Fig 

4.1.1. The first stage is the selection of Original HS from the database. The second stage is 

Preprocessing. Peak detection in the third stage follows the Preprocessing stage. The fourth 

stage is heart sound detection followed by the segmented HS in the final stage. 

  

HS   Preprocessing                       Peak Detection                        HS detection                           Segmented HS 

 

Figure 4.1.1 Block Diagram of HF method 

Preprocessing 

The recorded signal was first preprocessed before performing segmentation. PCG signals 

were then reduced in sample size to 4000 Hz by down-sampling and normalized as per (1). 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%:;<=>(?* Q :¿WWW(?*>@:(H:;<=>(?*H*                             (4.1) 

where :¿WWW(?* is the down sampled signal. The range of frequencies of the PCG signal lies 

in the range from 50 Hz to 700 Hz. Higher frequencies contain noise and are of not much clinical 

important for analysis and diagnosis. So we have used a 700Hz cut off frequency low pass 

Chebyshev type I filter. To obtain zero phase distortion, the signal sequence was reversed after 

filtering and was then run back. 

Peak detection using homomorphic filtering: 

In this approach we use the structural similarity of HSs to that of the modulated components. 

The fundamental PCG components are similar to the AM wave. PCG murmurs are similar to 

the AM and FM waves. In Homomorphic filtering technique we utilize a logarithmic function. 

This function converts the multiplied time domain signal into added frequency domain signals. 

The spectrum of PCG has both slow changing part and fast changing part. The fast changing 

part is eliminated using a LPF.  

If v(;* is a PCG signal and :(;*, its energy, then energy is given by 

     :(;* Q @(;*A(;*                                                     (4.2) 

 @(;* [  slow changing part A(;* –  fast changing part. @(;* consists of fundamental 

PCG components, while A(;* consists of murmurs.  

� Multiplication operation is converted to addition by taking a simple logarithmic 

function: 

.%ß(;* Q ���%(:(;**                                                  (4.3) 

which can be expressed as 

   ß(;* Q �� ��@(;*� g ���%(A(;**                          (4.4) 

� The logarithms of the two signals now add together. The high frequency component 

shows rapid variations in time. An appropriate linear low-pass filter B is used to filter 

the A(;* components:   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%ßà(;* Q B(����:(;*�*                                         (4.5) 

L refers to a 6th order type 1, low pass Chebyshev filter B  with a passband of 10Hz to 

20Hz. The formula for the Chebyshev filter is given by HË
(�*H� Q % ��qáÓâãÓ(ä*%Where 

ε = ripple factor, ω = normalized cutoff frequency and  å
�(�* Q æ®ç(_* K�¬l��  of 

the 6th order. 
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The logarithmic function does not affect the separability of the Fourier components of @(;* and A(;*a Since B is linear we have: 

     ßà(;* Q B(����@(;*� g ���%(A(;***                                (4.6) 

By exponentiation we arrive at:  xyz%(ßà(;** Q �:�(����@(;*� g ���%(A(;*** Q xyz%(���%(@(;*** Q %@(;*;  %%%%%%%%%%%%%%%                                                                                                                    (4.7) 

To cut off the murmurs we used 6th order type 1, low pass Chebyshev filter B  with a passband 

of 10Hz to 20Hz.  Fig 4.1.2. shows the smooth envelope of the signal obtained using 

exponentiation operation. Peak of the envelope is found. Those points greater than 1.5% of the 

peak value were considered.  

 

 Figure 4.1.2 Segmentation Procedure Using Homomorphic Filtering (x axis –time (s) and y axis- Amplitude 

(v) 

Heart Sound detection using detected Peaks  

In this stage we detect peaks and then extract single cardiac cycle of PCG signal.  Then we 

perform peak conditioning using homomorphic filtering which helps in cycle detection process. 

Peaks other than the S1 and S2 are rejected. Then we find peak width, peak start point, peak 

end point and distance between peaks are found.  

� The mean width of detected peaks is calculated. All peaks with width 

lesser than 50% of mean peak width is thus rejected.  

� The distance between two detected peaks, S1 and S2, cannot be less than 

80ms. During inspiration the A2 and P2 are at a distance of 30-80ms from 

each other [9]. Peak width less than 80ms corresponds to a split S2. Such 
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peaks are combined into a single peak. The possible width of S1 and S2 

is 80-120ms. Greater peak widths are discarded. These peaks were 

limited to 120ms and peak conditioning is achieved.  

4.2 Event Synchronous Heart Sound Segmentation 

Most of the Segmentation methods utilize threshold parameter for segmentation. Since it is 

difficult to set an appropriate threshold for all types of sounds these algorithms suffer from poor 

segmentation. So we have to look at methods where there is no use of threshold parameter. 

Event synchronous method utilizes calculation of Loudness function from the spectrogram. We 

differentiate the Loudness function to obtain the Event detection function. Event detection 

function helps in peak detection of S1 and S2. Two versions of this method are described in this 

section namely Low pass filtered Event Synchronous Method and CWT filtered Event 

Synchronous Method. 

 

4.2.1  Band pass Filtered Event Synchronous Method 

 

Figure 4.2.1 shows the block diagram of the Band Pass Filtered Event Synchronous 

Segmentation (BPF ESS) procedure for the event synchronous segmentation of cardiac sounds. 

The method is divided into five steps namely heart sound selection, Spectrogram analysis, bark 

spectrogram analysis, Smoothened bark spectrogram analysis, Loudness index evaluation, 

Cardiac event detection and smoothened cardiac events detection and Identification of the 

sounds S1 and S2. Each of them are discussed one after the other. Fig 4.2.2 shows the waveform 

plot of a normal heart sound. 

 

BPF               Spectrogram                           Bark Spectrogram                          Smoothened Bark Spectrogram 

HS 

 

   

     

     Smoothened Event detection                                          Event Detection                                  Loudness Index 

 

    

   

             S1-S2 Identification                                     Segmented HS 

 

Figure 4.2.1 Block Diagram of LPF-ESS Method 
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                           Figure 4.2.2 Signal plot of filtered normal sound (time(s)-x axis and Amplitude(v)-y axis) 
 

Obtaining BPF heart sound signal: 

Residual noises and murmurs are the main obstacles in the correct segmentation and 

identification of cardiac events. So a BPF is usually used for the removal of such noises and 

murmurs. We have chosen Chebyshev, Type 1 filter with frequency range 4 Hz to 30 Hz for 

removal of low frequency murmurs. For removing high frequency murmurs and noises 

Chebyshev, Type 1 filter with frequency range 90 Hz to 500 Hz is chosen. On using these two 

filters, we obtain a noise free and murmur free heart sound that is inputted to the second stage 

of the LPF-ESS method.  

Spectrogram Analysis: 

We obtain the Spectrogram of the cardiac sound signal, at roughly 3ms window. Fig 4.2.3 

shows the spectrogram of the normal heart sound. However, splitting up of frequencies in the 

audible range by means of a spectrogram does not relate to human perception of these sounds. 

Humans frequency perception of sounds stretch wider with rising frequencies in the sound. 

Thus, the spectrogram is converted into the better representation. This scale is the Bark Scale. 

The power spectrum of the sound is given Eq. (4.8) [1]: |�(��* Q tW~<�hW(|�|W*   , i > 0                                            (4.8) 

i is the instant of the power-spectrum intensity Ii. I0 is the hearing threshold of the PCG. To 

obtain a reasonable trade-off between dynamic range and resolution, I0 = 60 is chosen. Sound 

pressure levels below -60dB are completely clipped. The threshold of hearing is dependent on 

frequency. It is due to the outer and middle ear response of these sounds. The frequency f 

relates to the Bark scale z(f) [1]. 

                             ß(A* Q h¾èéêëè¥(Wa WWWÀìA* g ¾a ¼èéêëè¥%(u AÀ¼WW*tw*                   (4.9) 

Fig 4.2.4 shows the bark spectrogram of the normal heart sound. 
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Figure 4.2.3 Spectrogram of the filtered normal sound 

 

Figure 4.2.4 Bark Spectrogram of the filtered normal sound 

Identification of masker and masked cardiac sounds 

A Phonocardiogram has got both loud and soft sounds in it. For a very small time difference 

of less than 150ms it is impossible to hear both soft sounds and loud sounds of same frequency 

simultaneously. The loud sounds generally mask the soft sounds due to high energy content in 

them. This is termed as simultaneous masking. There are other two categories of masking 

namely: pre-masking and post-masking. Pre-masking lasts for only about 20ms duration. In 

this duration there are inaudible sounds softer than the masker sounds. Pre-masking is not 

implemented since similar effect is shown by signal-windowing artefacts during smoothing. 

Post-masking is a ringing type of temporal masking that lasts for about 200ms.  

To smoothen the spectrogram of the cardiac sound, the envelope of each frequency band is 

convolved with a 200ms half-Hanning (raised cosine) window. The bark spectrogram gives 

audio-visual representation of each beat in those sounds that are inaudible and invisible in a 

normal spectrogram. Sensation of loudness index is the intensity of the cardiac sound. Fig 4.2.5 
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shows the bark spectrogram of the filtered heart sound. 

 

Figure 4.2.5 Smoothed Bark Spectrogram of the filtered normal sound 

 

Valuation of loudness index 

The sensation of loudness is obtained by summing the amplitudes of all frequency bands of the 

sound in its spectrogram: 

B��(?* Q � �P(?*�PÛh�                                                                (4.10A) 

Ek represents the magnitude of the kth frequency band present in the spectrogram. There is a 

total of N such bands. Loudness function is a raw and unclear plot of the energy of cardiac 

sound and shows the intensity of S1 and S2 loudness. Fig 3.3.6 shows the raw loudness 

function. To smoothen the loudness function, we convolve it with a 300ms Hanning. The 

smoothened loudness function is given by B�>(?* Q B��(?* í î(;*a%                         (4.10B) 

î(;* Q RÉ<�t us:� w %%%: U �ÕtW%%%%: X �Õt                                                                                      (4.10C) 

represents the 300 ms Hanning window, � being the number of samples. Fig 4.2.7 shows the 

smoothened loudness function. 
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Figure 4.2.6 Loudness Index of the filtered normal sound 

 

                                       Figure 4.2.7 Smoothed Loudness Index of the filtered normal sound 

Detection of Cardiac Events 

We estimate the event detection function by calculating the first order difference of each 

spectral band, and then we find their sum. There are many onset and offset transients in this 

signal. A single event is represented by a transient within a 50-ms window. This event can be 

the corresponding cardiac sound S1 or S2 [4]. Fig 4.2.8 shows the raw event detection function. 

We find the smoothed events in the cardiac signal by convolving the raw event detection signal 

with a 400ms Hanning window. Fig 4.2.9 shows the smooth event detection function. The next 

step involved in the identification of cardiac events is the peak-picking stage. The segment of 

the sound is defined by the onset boundary and the offset boundary. An onset of the sound 

occurs generally with an increase in the variation of the loudness. An offset occurs with the 

decrease in the variation of the loudness. The local maximum is the characteristics of the softest 

onset moment. The local minimum is the characteristics of the softest offset. One can look at 

the zero crossings from the negative to the positive in the sound signal for maintaining signal 

continuity. 
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Figure 4.2.8 Event Detection of the filtered normal sound 

 

Figure 4.2.9 Smoothed Event Detection of the filtered normal sound 

 

S1-S2 Identification 

The S1 and S2 sounds are the important sounds present in the segmented cardiac cycle of the 

PCG. In each cardiac cycle we identify the initial S1 and S2 sounds (the first sounds) by noting 

the systole and diastole present in the single cardiac cycle. The diastole is the longest duration. 

The shortest duration between an S2/S1 and consecutive S1/S2 is the systole. Once the first 

sounds are identified, the other sounds are the alternating to the first sounds. Fig 4.2.10 shows 

the ESS method for Abnormal heart sound. 

Event Synchronous Segmentation algorithm: 

Input: De-noised heart sound  

Output: Segmented heart sound  

Steps: 

1 The spectrogram of the heart sound is evaluated by taking the STFT. 

2 The original spectrogram is converted into improved bark spectrogram. 

3 The improved bark spectrogram is smoothened by using a hanning window of 50ms 

duration. 

4 The loudness index is obtained by taking the row sum of the smoothened spectrogram. 

5 Smoothened loudness index is obtained by windowing the original loudness index by using 

a hanning window. 

6 Event detection function is obtained by differentiating the smoothened loudness index. 

7 Smoothened Event detection function is obtained by smoothening the original event 

detection function by a hanning window. 
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8 Maxima and minima of the smoothened event detection function gives the location of first 

heart sound (S1) and the second heart sound (S2). S1 and S2 are identified based on the 

systole and diastole duration. 

          

 

  Figure 4.2.10 Event Synchronous Segmentation Procedure for Abnormal heart sound 

 

4.2.2 CWT Filtered Event Synchronous Method 

 
Figure 4.2.11 shows the block diagram of CWT filtered Event Synchronous Segmentation 

procedure. This method uses a continuous wavelet transform to obtain the noise free and 

murmur free heart sound. To obtain the CWT filtered heart sound, the selected heart sound is 

first subjected to CWT. The continuous Wavelet transform coefficients are thresholded in the 

frequency range 4 Hz to 30 Hz and 90 Hz to 500 Hz. This effectively curtails all the low 

frequency and high frequency murmurs and noises. Then the inverse CWT is taken to obtain 

the actual heart sound with murmurs and noises removed. The spectrogram is taken for this 

heart sound and then converted to bark scale. The loudness indices and event detection 

functions are evaluated similar to section 4.2.1. Then the smoothened event detection is found 

and the peaks are identified based on the systole-diastole duration. 
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CWT-F               Spectrogram                           Bark Spectrogram                          Smoothened Bark Spectrogram 

HS 

 

   

     

     Smoothened Event detection                                          Event Detection                                  Loudness Index 

 

    

   

             S1-S2 Identification                                     Segmented HS 

 
                                      Figure 4.2.11 Block Diagram of CWT-ESS Method 

 

4.2.3 Comparison between BPF-ESS and CWT-ESS methods 

It was observed that there was residual noise (low frequency noise) in the frequency range of 

4 Hz to 30 Hz even after two stages of preprocessing involving Wavelet Filtering and TFBT 

approach. Figures 4.2.12-4.3.13 shows how a CWT filter effectively removes the residual 

noises which are in the frequency range of 4 Hz to 30 Hz. Also Figures 4.2.14-4.2.15 shows 

how the CWT filter removes the high frequency murmurs in the frequency range 90 Hz to 500 

Hz and low frequency murmurs in the frequency range 4 Hz to 30 Hz. Figures 4.2.16-4.2.19 

shows a comparison of BPF-ESS and CWT-ESS methods. In Figure 4.2.16, Pane 1 shows the 

normal HS signal with some low frequency residual noise. Pane 2 shows BPF filtered HS with 

low frequency noise removed. Pane 3 shows the difference signal of the normal HS with low 

frequency noise and BPF filtered HS. In Figure 4.2.17, Pane 1 shows the normal HS signal 

with some low frequency residual noise. Pane 2 shows the CWT filtered HS with low frequency 

noise removed. Pane 3 shows the difference signal of the normal HS with low frequency noise 

and CWT filtered HS. A comparison of the larger difference signal in two figures suggests that 

CWT filter removes more noise than its companion BPF. In Figure 4.2.18, Pane 1 shows the 

heart sound with systolic murmurs lying in 90 Hz to 500 Hz frequency range. Pane 2 shows 

BPF filtered signal with murmurs removed. Pane 3 shows the difference signal of the two. In 

Figure 4.2.19, Pane 1 shows the heart sound signal with systolic murmur. Pane 2 shows the 

CWT filtered signal with murmurs removed. Pane 3 shows the difference signal of the two.  A 

comparison of the larger difference signal in two figures suggests that CWT filter removes 

more murmurs than its companion BPF. 
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                                 Figure 4.2.12 Original HS containing low frequency noises 

 

 
                              Figure 4.2.13 HS with low frequency noise removed by CWT filter 
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Figure 4.2.14 Original HS (Pane 1), CWT filtered HS (Pane 2), Difference Signal using CWT filter (Pane 3) 
 

 
                                             Figure 4.2.15 Original HS with Systolic Murmur 
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Figure 4.2.16 HS with Systolic Murmur removed using CWT Filter 

 
          Figure 4.2.17 Original HS (Pane 1), CWT filtered HS (Pane 2), Difference Signal (Pane 3) 

 
      Figure 4.2.18 Original HS (Pane 1), BPF HS (Pane 2), Difference Signal using BPF 
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Figure 4.2.19 Original HS (Pane 1), BPF HS with murmur removed (Pane 2), Difference Signal (Pane 3) 

 

4.3 Results of Segmentation of Phonocardiogram  

4.3.1 Performance Metrics 

To evaluate the performance of the Phonocardiogram Segmentation the following 

metrics were evaluated: ��;��?�v�?Ú%��%(ï* Q % �ð�ðq�� 2 hWW                                                                               (4.11) 

ð<��?�v�%ð=���É?�v�%ñ@~��%ðð%(ï* Q % �ð�ðq�ð 2 hWW                                      (4.12) 

jÉÉ�=@ÉÚ%jÉÉ%(ï* Q % �ðq���ðq��q�ðq�� 2 hWW                                                         (4.13) 

�ð Q �hÕ�t%�<�;�%���>�;?��%È<==�É?~Ú 

�� Q �hÕ�t%�<�;�%�;%�Ú�?<~�Õò�@�?<~� 

�ð Q �hÕ�t%%|;É<==�É?~Ú%���>�;?��%�<�;� 

�� Q �<���%���>�;?��%@�%�hÕ�t%%�<�;� 

4.3.2 Results from Segmentation Procedures 

The heart sounds are pre-processed using two stages of filtering using wavelet transform 

(DWT) and Block Threshold technique (TFBT). The preprocessed heart sounds are subjected 

to three different segmentation techniques namely HF, BPFESS and CWTESS and analyzed. 

Table 4.3.1 gives the distribution of S1 and S2 sounds in the dataset. The preprocessed sounds 
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in the dataset were used to calculate the Shannon energy which was then filtered by an elliptical 

filter, using 0.1 normalized frequency, to remove the unwanted transients and obtain the smooth 

signal. The peaks of the resulting sounds were counted and noted as the total number of S1 and 

S2 sounds in the original signal.  A total of 121105 S1 and S2 sounds were observed in normal 

PCG and 36918 S1 and S2 sounds were noted in abnormal PCG giving an overall of 158033 

sounds in the dataset. The PCG signals were processed using the first method namely HF. Table 

4.3.2 shows the total number of systoles and diastoles present in the HF heart sounds. These 

regions showed silence or no heart sounds in the PCG. A total of 65862 periods of systole and 

diastole were observed in the normal PCG, while abnormal PCG showed 10602 such periods 

resulting in 76468 periods of systole and diastole in the overall dataset. Table 4.3.3 shows the 

True Positive (TP) and False Negative (FN) of the normal heart sounds segmented using HF 

method. True positive indicate the correctly segmented heart sounds in the PCG, while the FN 

indicate the number of noise components wrongly segmented as heart sounds. Even after two 

stages of filtering there is a small chance that residual noise remains and interferes in the 

segmentation of PCG signals. In the HF method, for the normal PCG, 42350 TP and 0 FN were 

reported for S1 sounds. Similarly, 44296 TP and 0 FN were reported for S2 sounds. Thus 86646 

TP and 0 FN were reported in the overall normal PCG dataset. Thus 42350 sounds were detected 

as S1 sounds while 44296 sounds were detected as S2 sounds amounting to a total of 86646 

detected heart sounds including the noise components. Table 4.3.3 shows the break-up of S1 

and S2 sounds for abnormal PCG. 9469 TP and 0 FN were reported for S1 heart sounds 

amounting to 9469 detected sounds. Similarly, 9785 TP and 0 FN were reported for S2 heart 

sounds giving total of 9785 detected sounds. All together 19254 S1 and S2 sounds were detected 

that included the detected noise components. Table 4.3.5 shows the breakup of abnormal and 

normal heart sounds that were detected using HF method. 86646 TP, 65862 TN, 34459 FP and 

0 FN were reported for normal heart sounds TN corresponds to the silence periods in the PCG 

namely the systole and the diastole. FP corresponds to the missed sounds. FP is obtained by 

subtracting the TP from the number of total detected normal heart sounds that did not include 

the noise components. 19254 TP, 10606 TN, 17674 FP and 0 FN were reported for abnormal 

heart sounds. Thus an overall 105900 TP, 76468 TN, 52133 FP and 0 FN were found in the 

entire dataset. Table 4.2.6 lists the performance metrics of all of the cardiac sounds segmented 

using HF method. The normal sounds showed 100% Sensitivity, 92.06% Positive Predictive 

Value and 81.6% Accuracy. Sensitivity refers to the correct detection of an S1/S2 normal heart 

sound when noise components are present. A high value of Sensitivity indicates that there is 

high chance of correct Segmentation of PCG in the presence of noise. Positive Predictive Value 
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signifies the number of heart sounds detected when some of them are missed. A high Positive 

Predictive Value indicates that the rate of PCG segmentation is very high at the cost of very 

low number of missed sounds. Accuracy refers to the overall rate of correct segmentation of 

normal PCG in the presence of noise and missed heart sound components. An accurate 

Segmentation algorithm shows a high degree of accuracy. Abnormal PCG reported 100% 

Sensitivity, 52.12% Positive Predictive Value and 62.8% accuracy. It was observed that the 

Positive Predictive Value and Accuracy in abnormal heart sounds was slightly less when 

compared to that of normal sounds. The main possible cause for this was the presence of 

residual noise components and murmurs in the abnormal PCG that remained even after filtering. 

The dataset reported 100% Sensitivity, 67.01% Positive Predictive Value and 77.77% Accuracy 

overall. 

As a second step the PCG is segmented using BPFESS method. Table 3.4.7 shows the breakup 

of silence period in the normal and abnormal PCG. Normal sounds reported 75760 number of 

systoles and diastoles. Similarly, Abnormal sounds reported 14076 number of systoles and 

diastoles. An overall 89836 sounds were reported as the number of systoles and diastoles in the 

entire dataset. Table 4.3.8 shows the segmentation of normal cardiac sounds using BPFESS 

method. In Normal PCG S1 sounds reported 55010 TP and 0 FN, while the S2 56486 TP and 0 

FN. Thus an overall 111496 TP and 0 FN were reported for the normal dataset. Table 4.3.9 

shows the segmentation of Abnormal cardiac sounds using BPFESS method. In Abnormal PCG 

S1 sounds showed 14176 TP and 0 FN while S2 sounds showed 14350 TP and 0 FN. This 

resulted in 28536 TP and 0 FN for the abnormal sounds. Table 4.3.10 shows the segmentation 

of all cardiac sounds. Normal sounds showed 111496 TP, 75760 TN, 9609 FP and 0 FN while 

abnormal sounds reported 28526 TP, 14076 TN, 8402 FP and 0 FN. Thus an effective 140022 

TP, 89836 TN, 18011 FP and 0 FN was reported for the whole dataset. Table 4.3.11 shows the 

performance metrics of the PCG signals subjected to BPFESS method. Normal sounds showed 

100 Sensitivity, 99.06% Positive Predictive Value and an Accuracy of 95.12%. While the 

abnormal sounds showed 100 Sensitivity, 77.25% Positive Predictive Value and 83.53% 

Accuracy. Thus in all, 100 Sensitivity, 88.6% Positive Predictive Value and 92.73% Accuracy 

was observed. It was noted that the Positive Predictive Value and Accuracy in BPFESS method 

was slightly higher compared to its predecessor HF method. This was because of a careful 

selection of a BPF to remove murmur in time domain as against the removal of murmur in the 

logarithmic domain using LPF in HF method. 

Table 4.3.12 shows the systole-diastole or silence period in PCG signal where there is no heart 
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sound. 72208 number of such periods are observed in the PCG signal segmented using 

CWTESS method. 15477 such periods were noted in case of abnormal PCG signal. 87685 such 

periods were observed for the entire dataset using CWTESS method. Table 4.3.13 shows the 

breakup of the segmentation of normal PCG signal segmented using CWTESS method. S1 

sounds showed 57060 number of TP and 0 FN. The S2 sounds showed 58410 TP and 0 FN. 

Thus 115470 such TP and 0 TN were observed for all of the normal sounds in the dataset. In 

case of Abnormal cardiac sounds shown in Table 4.3.14, 14176 TP and 0 FN were observed 

for S1 while S2 showed 17223 TP and 0 FN. Thus 34115 TP and 0 FN was reported in case all 

of the Abnormal sounds. Table 4.3.15 shows the segmentation of all cardiac sounds present at 

the dataset. The table indicates that Normal sounds result in 115470 TP, 72208 TN, 5635 FP 

and 0 FN. Also 34115 TP, 15477 TN, 2813 FP and 0 FN is found in case of Abnormal heart 

sounds. Altogether 149585 TP, 87685 TN, 8448 FP and 0 FN is reported for all sounds. As 

shown in Table 4.3.16, performance metrics evaluated for all cardiac sounds segmented using 

CWTESS method reveal the following information. Normal sounds showed 100% Sensitivity, 

95.35% Positive Predictive Value and 97.08% Accuracy. On similar lines, Abnormal Cardiac 

Sounds showed 100% Sensitivity, 92.38% Positive Predictive Value and 94.63%. Thus all 

cardiac sounds in the dataset showed 100% Sensitivity, 94.65% Positive Predictive Value and 

96.56% Accuracy. It was observed that CWTESS method outperformed their previous 

counterparts namely BPFESS method and HF method in terms of performance metrics.  

Table 4.3.1 Actual Cardiac sounds 

  

                     Table 4.3.2 Actual Sounds in Systole/ Diastole Sounds (HF method)  

 

                  Table 4.3.3 Segmentation of Normal Cardiac sounds (HF method) 

 

        Sounds S1 S2 Total  

       Normal  59534 61571 121105 

    Abnormal 18484 18444 36928 

   Entire Dataset 78018 80015 158033 

        Sounds Total Sounds in Systole/Diastole 

       Normal  65862 

    Abnormal 10606 

   Entire Dataset 76468 

Normal sounds TP FN Total 

S1 42350 0 42350 

S2  44296 0 44296 

Entire cycle 86646 0 86646 
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                             Table 4.3.4 Segmentation of Abnormal Cardiac sounds (HF method)  

 

                            Table 4.3.5 Segmentation of All Cardiac sounds (HF method) 
 

                                           Table 4.3.6 Scoring of all cardiac sounds 
 

                   Table 4.3.7 Actual Sounds in Systole/ Diastole Sounds (BPFESS method) 

  

                  Table 4.3.8 Segmentation of Normal Cardiac sounds (BPFESS method) 

 

                          Table 4.3.9 Segmentation of Abnormal Cardiac sounds (BPFESS method)  

 

                          Table 4.3.10 Segmentation of All Cardiac sounds (BPFESS method) 

Abnormal sounds TP FN Total 

S1 9469 0 9469 

S2  9785 0 9785 

Entire cycle 19254 0 19254 

All sounds TP TN FP FN Total 

Normal 86646 65862 34459 0 186967 

Abnormal 19254 10606 17674 0 47534 

Entire cycle 105900 76468 52133 0 234501 

Sounds Sensitivity(%) Positive Predictive 

Value  

Accuracy 

Normal 100 71.5 81.6 

Abnormal 100 52.14 62.8 

           All sounds  100 67.01 77.77 

        Sounds Total Sounds in Systole/Diastole 

       Normal  75760 

    Abnormal 14076 

   Entire Dataset 89836 

Normal sounds TP FN Total 

S1 55010 0 55010 

S2  56486 0 56486 

Entire cycle 111496 0 111496 

Abnormal sounds TP FN Total 

S1 14176 0 14176 

S2  14350 0 14350 

Entire cycle 28526 0 28526 

All sounds TP TN FP FN Total 

Normal 111496 75760 9609 0 196865 

Abnormal 28526 14076 8402 0 51004 

Entire cycle 140022 89836 18011 0 247869 
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                                                       Table 4.3.11 Scoring of All Cardiac sounds 

 

                       Table 4.3.12 Actual Sounds in Systole/ Diastole Sounds (CWTESS method)  

 

                     Table 4.3.13 Segmentation of Normal Cardiac sounds (CWTESS method) 

 

                             Table 4.3.14 Segmentation of Abnormal Cardiac sounds (CWTESS method) 
 

                           Table 4.3.15 Segmentation of All Cardiac sounds (CWTESS method) 
 

                                                         Table 4.3.16 Scoring of all cardiac sounds 
 

4.3.3 Observations and Discussion 
 

From the statistics of the above mentioned tables it is clear that three aforementioned methods 

HF, BPFESS and CWTESS methods segmented the PCG signals, both normal and Abnormal, 

Sounds Sensitivity(%) Positive Predictive 

Value (%)) 

Accuracy(%) 

Normal 100 92.06 95.12 

Abnormal 100 77.25 83.53 

          All sounds  100 88.60 92.73 

        Sounds Total Sounds in Systole/Diastole 

       Normal  72208 

    Abnormal 15477 

   Entire Dataset 87685 

Normal sounds TP FN Total 

S1 57060 0 57060 

S2  58410 0 58410 

Entire cycle 115470 0 115470 

Abnormal sounds TP FN Total 

S1 16892 0 16892 

S2  17223 0 17223 

Entire cycle 34115 0 34115 

All sounds TP TN FP FN Total 

Normal 115470 72208 5635 0 193313 

Abnormal 34115 15477 2813 0 52405 

Entire cycle 149585 87685 8448 0 245718 

Sounds Sensitivity(%) Positive Predictive 

Value (%) 

Accuracy(%) 

Normal 100 95.35 97.08 

Abnormal 100 92.38 94.63 

           All sounds  100 94.65 96.56 
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with good accuracy. However, side by side comparison indicate CWTESS method showed 

better accuracy compared to its companion BPFESS and HF methods. It was observed that 

CWTESS method outperformed their previous counterparts namely BPFESS method and HF 

method in terms of performance metrics. It is due to the fact that CWTESS method was able to 

locate the cardiac events more precisely by isolating the murmurs to the maximum level. 

Another notable observation was that all three methods showed 100% Sensitivity. This is a 

clear indication of the fact that the preprocessing stage involving Wavelet Filtering followed by 

TFBT method removed most of the noises and the segmentation algorithms were immune to 

the left over bare minimal residual noises.   
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Chapter 5 

Classification of Phonocardiograms 

The automatic classification of pathology in heart sounds has been described in the literature 

for over 50 years. The first work on classification were reported as early as 1963 when Gerbarg 

et al [101] used a threshold based method to identify rheumatic heart disease in children. We 

have discussed the various heart sound classification methods mentioned in literature, namely, 

(1) Artificial Neural Network (ANN) - based classification; (2) Support Vector Machines 

(SVM) - based classification; (3) Hidden Markov Model (HMM) - based classification and (4) 

Cluster - based classification. Based on the literature survey it is seen that the results of this 

classification techniques are mainly dependent on the features used for classification.  

In this chapter, classification techniques namely 1) FCM 2) K-Means 3) GMM are evaluated 

for classification of heart sounds using the mean and standard deviation of the loudness index 

extracted from the spectrogram of the cardiac cycle segmented using CWT-ESS method as 

features for classifying the segmented PCG.  

5.1 Use of Loudness features for Classification 

Literature reveals that there exists silence period in the normal heart sounds namely systole and 

diastole. This portion of the heart sound shows minimal intensity. Cardiac auscultation reveals 

many high pitch sounds which might have occurred due to valve disorders such as stenosis and 

regurgitation. The loudness (grade 1-grade 4 sounds) of these sounds are lesser compared to the 

first and second heart sounds. For grade 5 and grade 6 abnormal sounds, the loudness is much 

more than the first and second heart sounds. This shows that more of heart sound energy is 

more concentrated in the systoles and diastoles of abnormal sounds than the normal ones. Thus 

loudness index can be used a measure to possibly identify and distinguish heart sounds. Mean 

and Standard deviation values of the heart sound loudness index are found and are used as the 

two features for the classification of these sounds. Mean and standard deviation loudness 

indices vary over a broader range for abnormal sounds due to the presence of murmurs while they 

vary over a shorter range for normal sounds.  

5.2 Extraction of Loudness features 

The segmented heart sounds were used to extract the single cardiac cycle that included a S1 

sound, a systole, a S2 sound and a diastole. The spectrogram of this cardiac cycle was obtained 
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by selecting a window size of 256 samples and hop size of 128 samples (half of window size). 

Hanning window was selected for this purpose. The row sum of the Spectrogram coefficients 

was found and the loudness function was obtained. For every heart sound cycle, the mean and 

standard deviation of loudness indices were found from the loudness function. These two values 

were considered as loudness specific features that was later utilized for classification. 

5.3 Classification of heart sounds using GMM 

 
      Segmented HS        Cardiac cycle extraction              Spectrogram of HS                        Loudness Function 

 

 

   

GMM Clustering           Feature Vectors   Mean and Std Loudness Indices 

                            

                                                   Figure 5.2.1 Block Diagram of GMM Clustering 

Literature survey reveals many classification methodologies used for heart sound 

classification. In these methods, Euclidean distance is the most commonly used distance metric. 

When Euclidean metric is used the largest scaled feature gets dominated. Solution to this 

problem could be normalization of the continuous features to a common range of variance. 

Usage of Euclidean metric distorts the linear correlation that exists in the features. Euclidean 

distance results in hyper- spheroid clusters. This problem can be solved using Mahalanobis 

distance. Mahalanobis distance used in GMM results in hyper-ellipsoidal clusters. The 

database consists of two sound types; both of which is assumed to be generated by the two 

different Gaussian processes. The probability distribution function (pdf) is given by 

 ð%(:;HV* Q h(ts*�ÕtHóHhÕt �:�%([ ht (: [ :Â*�ólh(: [ :Â*                                                      (5.1) 

Where d is the dimensionality. ML estimators of μ and ⅀ are computed by :Â Q h� (� :;; )                                      ⅀=
h� (� (; : [ :Â*(: [ :Â*�                                       (5.2) 

The objective function is formed given by Eq. (5.1), by summing the class conditional density 

over all the classes for a feature in the feature vector; and again taking the product for all the 

features, assuming the features are linearly independent. Such likelihood based objective 

function for optimization is maximized by EM [19] algorithm, which happens to be a nonlinear 

optimization method. It optimizes the log likelihood over the entire feature space, including 

both observed data and hidden information embedded in the data. There are two steps in the 

EM algorithm namely Expectation step (E-step) and Maximization step (M-step). In E-step the 

posterior density based on conditional density using Bayes rule [20] is computed. In the M-step 
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the initial model is replaced with a new model which is a better one to represent the features 

such that the log- likelihood is more than that of the previous iteration. The iterations are 

repeated until the new estimate will give same model and there will not be any improvement in 

the model. The algorithm is briefly described here: 

Input: A set of N feature vectors, I%Q%´8c�%8^�%Ù%8�µ%model structure ô%Q%´õ)�%ö)�%�)µ�%)%Q%c%Ù%÷�%where μ’s and ⅀’s are parameters for the Gaussian models and αs’ are prior parameters 

subject to �)%U%`�%ø)%4_�%ö)�)%Q%c. 

Output: Trained model parameters ô%that maximizes the data likelihood  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%((IHô*%Qù_%��)%(8_H�)*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%(5.3) 

 

And a partition of data vectors given by the cluster identity vector Y = {y1…, yN}, yn ú {1..., K}. 

 Steps: 

1. (Initialization) Initialize the model parameters ô. 

2. (E-Step) The posterior probability of model k , given a data vector xn and current model 

parameters%ô , is estimated as 

         %ð(PH:;� û* Q fP�(:PHVP*� fS�(:;HVP*S                                                       (5.4) 

where the pdf p(e|λ) is given in (5.4) 

3. (M-Step) The ML re-estimation of model parameters ô is given by 

                           %%%%%%%üP(;��* Q � ð�PT:;� û�:;;� ð�PT:;� û�;                                                          (5.5) 

                    %%%%%%%%%%%%%%%ýP(;��* Q � ð�PT:;� û�(:;l:Â;*(:;l:Â;*�; � ð�PT:;� û�;                                     (5.6) 

                                 fP(;��* Q h� � ð(PH:;� û*;                                                       (5.7) 

4. (Stop) if P(E|%ô) converges; otherwise go back to Step 2; 

5. For each data vector xn, set 

                                        Ú; Q @=�P £èy%( fP�(:;HVP**                                           (5.8) 

Figure 5.2.1 depicts the block diagram of a GMM clustering technique for PCG signals. As a 

first stage the heart sounds segmented using CWT-ESS technique is used for clustering. In the 

second stage the single cardiac cycle is extracted from the segmented heart sound. In the third 

stage spectrogram of the heart sound is obtained. Loudness function is the fourth stage in the 

clustering process. In the fifth stage, maximum and minimum loudness indices are extracted 
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from the Loudness function. As a sixth stage feature vectors are created from the loudness 

indices. In the final stage, these feature vectors are clustered by GMM. 

 

5.4 K Means Clustering of heart sounds 

K-means (MacQueen, 1967) is the most simplest unsupervised learning algorithms. To solve 

the problem, we first fixing the number of clusters k and then, k centroids one for each cluster. 

The centroids are placed in such a way that different location causes different result. Each point 

in the dataset belongs to a particular nearest centroid. As a first step, we compute the first 

group. Then we re-calculate k new centroids as centers of the clusters obtained from the 

previous step. We observe that the k centroids change their location step by step until no more 

changes are done.  

Finally, using this algorithm we aim at minimizing an objective function, in this case a squared 

error function. The objective function % 
%þ Q %� � �:�(S* [ ÉS�t;��hPS�h                                                   (5.9) 

Where �8 (�* [ K���
 is a chosen distance measure between a data point 8 (�* and the cluster 

centre K� , is an indicator of the distance of the n data points from their respective cluster centers. 

The algorithm is composed of the following steps: 

1. The K data-points (initial group centroids) to be placed into the space 

2. Assigning of each of the object to the group which has the closest centroid. 

3. Finding the positions of the K centroids after objects assignment. 

4. Repeat the Steps 2 and 3, until the centroids are static.  

5.5 Fuzzy C Means Clustering of heart sounds 

Fuzzy c-means (FCM) is a type of unsupervised clustering method in which we make the data 

to fit to two or more number of clusters. In 1973, Dunn first developed this method. This 

method was improved later by Bezdek in 1981. This method is popular with pattern recognition 

applications. It is based on minimizing the following objective function: 
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 þ> Q %� � ��S>�:� [ ÉS�tÈS�h���h , h ª > X �                         (5.10) 

where m is any real number greater than 1, � �� is the degree of membership of  8  in the cluster 

j,  8 %is the ith of d-dimensional measured data, K� is the d-dimension centre of the cluster, and �í� is any norm expressing the similarity between any measured data and the centre. 

Fuzzy partitioning is carried out through an iterative optimization of the objective function 

shown above, with the update of membership � �� and the cluster centres K� by: 

��S Q % h
� (�:��ÉS��:��ÉP�* t>�hÈPÛh

                                              (5.11) 

       ÉS Q %� ��S>a:���Ûh� ��S>��Ûh                                                       (5.12) 

This iteration will stop when 

 >@:�S´���S(Pqh* [ ��S(P*� X %�,                                 (5.13) 

where 	 is a termination criterion between 0 and 1, whereas k are the iteration steps. This 

procedure converges to a local minimum or a saddle point of  J�. 

The algorithm is composed of the following steps: 

1. Initialize 
 Q {� �} matrix, 
(�* 
2. At k-step: calculate the centres vectors å(�* Q �K��%with 
(�* %

K� Q %� � ��a 8 
 ��� � ��
 ��  

3. Update 
(�*,%
(�q�*    %
� � Q % c

� (�8 [ K���8 [ K��* ��l�â���
 

4. If ±48 �´�� �(�q�* [ � �(�*� X %	 then STOP; otherwise return to step 2 

 

 



77 

 

5.6 Comparison of Classifier performance 

5.6.1 Performance Metrics 

Following performance metrics were used for evaluation of heart sound Classification. 

 ��;��?�v�?Ú%��%(ï* Q % �ð�ðq�� 2 hWW                                                                               (5.14) 

 ���É�A�É�?Ú%��%(ï* Q % ����q�ð 2 hWW                                                                             (5.15) 

 jÉÉ�=@ÉÚ%jÉÉ%(ï* Q % �ðq���ðq��q�ðq�� 2 hWW                                                                   (5.16) 

�ð Q �<=>@~%�<�;�%É~@���A���%@�%�<=>@~ 
�� Q j�;<=>@~%�<�;�%É~@���A���%@�%j�;<=>@~ 
�ð Q �<=>@~%�<�;�%É~@���A���%@�%j�;<=>@~ 
�� Q j�;<=>@~%�<�;�%É~@���A���%@�%�<=>@~ 

5.6.2 Results from Experiments 

The heart sounds from the Physionet database are initially pre-processed by filtered using 

Wavelet and TFBT techniques. These sounds are then processed using the CWT-ESS 

procedure. This results in cycles of heart beat of approximately 3s duration. Two datasets are 

formed consisting of abnormal and normal heart sounds apiece. In each of the datasets two 

groupings are done one for training set and the other for test set. 50% of the dataset sounds 

make up the training set while the remaining 50% sounds make up the test set. The sounds are 

then clustered using the GMM classifier. Fig 5.6.1 shows the segmented heart sound with 

segmentation boundaries. Fig 5.6.2 shows the normal heart sound with its loudness index. Fig 

5.6.3 shows the abnormal heart sound with loudness features. The abnormal heart sound and 

normal heart sound show different types of peaks. Fig 5.6.4 shows the log likelihood function 

plot for the sounds. The function is a negative function and it increases steadily and then 

stabilizes to a constant value for a total of 101 iterations. Fig 5.6.5 shows the 3D-Scatter plot of 

all sounds. Two features were used the mean loudness along x axis and standard deviation of 

loudness along y axis. Fig 5.6.6 shows the Expectation-Maximization 3D Scatter plot of all 

sounds. The points in blue are the abnormal sounds with broader loudness values in terms of 

mean and standard deviation, while the sounds in red are the normal sounds with shorter range 
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loudness values. The centroids are also shown for two different clusters.  

A total of 3239 sounds of type abnormal and normal were used for training and testing purpose. 

Three classifiers namely K Means, FCM and GMM were used.  

Table 5.6.1 shows K Means Clustering in which out of 2564 normal sounds all of them were 

TP and 5 were FN. However, there were 660 abnormal sounds that were classified as FP and 

10 sounds were TN. This led to a sensitivity of 99.61%, Specificity of 99.25% and an accuracy 

of 99.53%. The cause for high performance metrics for classification can be attributed to strong 

de-noising algorithm followed by robust segmentation to identify cardiac cycles consisting of 

at least one S1, one S2, a systole and a diastole. 

Similarly, Table 5.6.2 shows FCM Clustering in which out of 2569 normal sounds all of them 

were TP and 3 were FN. At the same time, there were 662 abnormal sounds that were classified 

as FP and 5 sounds were TN. This led to a sensitivity of 99.80%, Specificity of 99.55% and an 

accuracy of 99.75%.  

Table 5.6.3 shows GMM Clustering in which out of 2572 normal sounds all of them were TP 

and 1 were FN. There were 664 abnormal sounds that were classified as FP and 2 sounds were 

TN This led to a sensitivity of 99.92%, Specificity of 99.84% and an accuracy of 99.91%.  

Results from Table 5.6.4 showed that with mean and standard deviation of loudness as features 

GMM, FCM and K-Means algorithms showed superior performance in terms of Sensitivity, 

Specificity and Accuracy. The residual noise was low enough such that it hardly interfered in 

classification process thus producing high accuracy in each of the above mentioned classifiers. 

Class                                          Actual Class 

Predicted Class 2564 10 

5 660 

                                      Table 5.6.1 Confusion Matrix of all sounds using K means 

Class                                          Actual Class 

Predicted Class 2569 5 

3 662 

                                     Table 5.6.2 Confusion Matrix of all sounds using FCM 
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Class                                          Actual Class 

Predicted Class 2572 2 

1 664 

                                    Table 5.6.3 Confusion Matrix of all sounds using GMM 

Methods Se(%) Sp(%) Acc(%) 

K Means  99.61 99.25 99.53 

FCM  99.80 99.55 99.75 

GMM  99.92 99.84 99.91 

                                   Table 5.6.4 Scoring of all sounds using Different Methods 

 

 

 

 

 

 

                  

 

 

 

 

 

Figure 5.6.1 Segmented heart sound (blue) and Segmentation boundaries (S1 red, S2 green).  

Figure 5.6.2 Normal heart sound and the loudness curve 
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                                          Figure 5.6.3 Abnormal Heart sound with loudness curve  

 

 

 

                                                                          

 

 

 

 

 

 

 

Figure 5.6.4 Log likelihood variations versus iterations

 

Figure 5.6.5 Scatter plot of all observations (mean loudness index-x axis and std of loudness index y axis)
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        Figure 5.6.6 EM plot of all observations (mean loudness index-x axis and std of loudness index y axis) 
 

5.6.3 Observations and Discussion 
 

From the above tables and plot it is clear that high classification accuracy is obtained using the 

above mentioned classifiers. It was observed that GMM outperformed K Means and FCM 

classifiers in terms of Sensitivity, Specificity and Accuracy. The reason behind the high 

classification accuracy can be attributed to the selection of most appropriate features vectors. 

It was observed that selection of mean and standard deviation of loudness features as feature 

vectors yielded a high degree of classification and an even high degree of classification with 

respect to GMM in particular. Obtaining high degree of Classification has been observed in 

other works in literature. However, we have tried to do this with minimum number of feature 

vectors (=2). We have obtained a high degree of classification that is unusual with two features 

(minimum) and often noticed with greater number and types of feature vectors (more than two). 
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Chapter 6 

 
                          Conclusion and Future scope 
 

In this work Phonocardiograms available in the form of database have been utilized. The MIT 

heart sound database with over 3000 sounds has been used. The sounds are noisy but contain 

vital information regarding the status of the heart. Additional noise has been added for the 

purpose of analysis namely filtering. Filtering has been implemented by estimating the noise 

using activity detection method/ IMCRA. Activity detection estimates noise in stationary 

environments by detecting heart sound and non-heart sound regions in the signal. The noise is 

usually present in the silent non-heart sound region in the signal. For non- stationary noise 

estimation IMCRA is used. IMCRA method estimates the noise using Time recursive averaging 

technique. The estimated noise is reduced to minimal residual value using time frequency block 

threshold method. This method outperforms soft threshold and Overlapping group shrinkage 

method in terms of SNR. The de-noised sound is segmented using the CWT-ESS method. This 

method gives a high accuracy of 96.56% and is comparable with the state of the art 

segmentation techniques in terms of results. To check the robust of CWT-ESS method, it is 

compared with HF method and BPF-ESS methods. Cardiac cycles were extracted from the 

segmented heart sounds. The loudness features namely mean and standard deviation of 

loudness was extracted from the single heart sound cycle using Spectrogram. The features from 

all heart sounds are then classified using GMM by clustering the sounds into normal and 

pathological sounds. The classification accuracy is as high as 99.91% and is comparable to the 

state of the art classifiers mentioned in literature. To check the robustness of GMM classifier 

for loudness features, the clustering was implemented with K-Means and FCM classifier and 

compared. It was observed that, in terms of performance metrics namely Sensitivity, Specificity 

and Accuracy, with loudness as features GMM showed robust performance against the other 

two classifiers.                                                      

 

 

                                                 Key Contributions of This Work 

 

Performances of existing signal processing techniques are investigated for heart sound de-

noising, delineation and classification under different kinds of PCG signal patterns and noise 

conditions. 
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• Different signal processing approaches such as Time Frequency Block Thresholding (TFBT), 

Overlapping Group Shrinkage (OGS) and Soft thresholding (ST) are studied for suppressing 

the background noises. 

• Performance of different Segmentation techniques like Homomorphic filtering (HF) and Band 

pass filtered event synchronous Segmentation (BPF-ESS) is studied using different kinds of 

PCG signals including large-amplitude heart sounds (S1, and S2) and small-amplitude heart 

sounds (S3 and S4) and other heart murmurs. 

• A bark spectrogram based Continuous Wavelet transform based Event Synchronous 

Segmentation (CWT-ESS) waveform delineation approach is proposed for automatically 

determining the boundaries of heart sounds. No noise threshold was used in this procedure. 

• In this study, Loudness Indices are extracted from the Spectrogram of the cardiac cycle 

extracted from heart sound segmented using ESS method. 

•  In this study, the mean and standard deviation of Loudness features obtained from Loudness 

Indices are clustered using GMM.  

                                                               Future Directions 

For real-time applications of a unified PCG signal delineation framework for both Computer 

Aided Diagnosis and Electronic Stethoscope, the future directions of the thesis work are 

summarized as follows. 

• Parameter extraction accuracy of the PCG signal delineation methods namely BPF-ESS, 

CWT-ESS and HF will be evaluated using different kinds of pathological and non-pathological 

PCG signals 

• Robustness of the unified PCG signal delineation framework will be studied under different 

kinds of physiological interferences such as lung and bowel sounds and external noise sources 

such as motion artefacts, speech, and instrument noise. 

• Feasibility of real-time implementation of the delineation framework will be studied on the 

embedded processors for the development of electronic stethoscope having the capability of 

automatically extracting the clinical indices form the heart sound and murmur signals and time-

frequency visualization of different kinds of heart sound and murmur patterns. 

• In this thesis the proposed methods namely TFBT, ESS methods have been implemented 

using the largest available Physionet database and compared with the other time frequency 

methods like OGS and ST with good results. Of the latest, many signal processing methods 

like flexible analytic wavelet transform, Tunable-Q wavelet transform, empirical wavelet 

transform, variational mode decomposition and Fourier Bessel series expansion based 

empirical wavelet transform have been developed. These methods have used proprietary 
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database with less number of sounds with good results. We have compared these methods for 

the proprietary database with our methods with physionet database as mentioned in Table 2.6.1 

and Table 2.6.2. As a future work these methods will be compared with methods under the 

scope of the thesis using Physionet database. 
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