Moodlakatte Institute of Technology

(A Unit of Moodlakatte Nagarathna Bhujanga Shetty Trust (R.))

(Approved by AICTE, New Delhi & Affiliated to VTU, Belagavi)

Moodlakatte - 576 217, Kundapura Taluk, Udupi District, Karnataka

Course outcome statements of 2018-2022 Batch

The below table represents the course outcome statements of the courses offered from first semester to eight semester of Electronics and Communication Engineering 2018-2022 Batch.

Course Name		CALCULUS AND LINEAR ALGEBRA	
Course Code		18MAT11	
CO 1	Apply t	he C knowledge of calculus to solve problems related to polar curves and its applications	
COT	in determining the bentness of a curve.		
CO 2	Learn the notion of partial differentiation to calculate rates of change of multivariate functions and		
CO 2	solve pr	oblems related to composite functions and Jacobians.	
CO 3	Apply t	he concept of change of order of integration and variables to evaluate multiple integrals	
CO 3	and thei	r usage in computing the area and volumes.	
CO 4	Solve first order linear/nonlinear differential equation analytically using standard methods		
CO 5	Make u	se of matrix theory for solving system of linear equations and compute eigenvalues and	
	eigenve	ctors required for matrix diagonalization process.	

Course	Name	ENGINEERING PHYSICS
Course	Code	18PHY12/21
CO 1	Underst	and various types of oscillations and their implications, the role of Shock waves in various
	fields an	nd recognize the elastic properties of materials for engineering applications
CO 2	Realize	the interrelation between time varying electric field and magnetic field, the transverse
	nature of the EM waves and their role in optical fiber communication.	
CO 3	Compute Eigen values, Eigen functions, momentum of Atomic and subatomic particles using	
	Time independent 1-D Schrodinger's wave equation.	
CO 4	Apprehend theoretical background of laser, construction and working of different types of lasers	
	and its applications in different fields	
CO 5	Understand various electrical and thermal properties of materials like conductors, semiconductor	
	and dielectrics using different theoretical models.	

Course Name		BASIC ELECTRICAL ENGINEERING
Course Code		18ELE13/23
CO 1	Analyse	e D.C and A.C circuits.
CO 2	Explain the principle of operation and construction of single-phase transformers.	
CO 3	Explain the principle of operation and construction of DC machines and synchronous machines.	
CO 4	Explain the principle of operation and construction of three phase induction motors.	
CO 5	Discuss concepts of electrical wiring, circuit protecting devices and earthing.	

Course Name		ELEMENTS OF CIVIL ENGINEERING AND MECHANICS
Course Code		18CIV 14/24
CO 1 Mentio		the applications of various fields of Civil Engineering
CO 2	Compu	te the resultant of a given force system subjected to various loads.
CO 3	Comprehend the action of Forces, Moments and other loads on systems of rigid bodies an	
	compute the reactive forces that develop as a result of the external loads.	
CO 4	Locate the Centroid and compute the Moment of Inertia of regular and built-up sections.	
CO 5	CO 5 Express the relationship between the motion of bodies and analyze the bodies in motion	

Course Name		ENGINEERING GRAPHICS
Course Code		18EGDL15/25
CO 1	Prepare engineering drawings as per BIS conventions mentioned in the relevant codes.	
CO 2	Produce computer generated drawings using CAD software	
CO 3	Use the knowledge of orthographic projections to represent engineering information <i>I</i> concepts	
	and present the same in the form of drawings.	

Course Name	ENGINEERING PHYSICS LABORATORY
Course Code	18PHYL16/26

CO 1	Apprehend the concepts of interference of light, diffraction of light, Fermi energy and magnetic
	effect of current
CO 2	Understand the principles of operations of optical fibers and semiconductor devices such as
	Photodiode, and NPN transistor using simple circuits
CO 3	Determine elastic moduli and moment of inertia of given materials with the help of suggested
	procedures
CO 4	Recognize the resonance concept and its practical applications
CO 5	Understand the importance of measurement procedure, honest recording and representing the
	data, reproduction of final results

Course Name		BASIC ELECTRICAL ENGINEERING LABORATORY
Course Code		18ELEL17/27
CO 1	CO 1 Identify the common electrical components and measuring instruments used for cond	
	experiments in the electrical laboratory.	
CO 2	Compare power factor of lamps	
CO 3	Determine impedance of an electrical circuit and power consumed in a 3 phase load.	
CO 4	Determine earth resistance and understand two way and three way control Of lamps.	

Course Name		TECHNICAL ENGLISH - I
Course Code		18EGH18
CO 1 Use gra		mmatical English and essentials of language skills and identify the nuances of phonetics,
	intonati	on and flawless pronunciation
CO 2	Implement English vocabulary at command and language proficiency	
CO 3	Identify common errors in spoken and written communication	
CO 4	Understand and improve the nonverbal communication and kinesics	
CO 5	Perform well in campus recruitment, engineering and all other general competitive examinations	

Course	Name	ADVANCED CALCULUS AND NUMERICAL METHODS
Course	Code	18MAT21
CO 1	Illustrat	te the applications of multivariate calculus to understand the solenoidal and irrotational
	vectors	and also exhibit the interdependence of line, surface and volume integrals.
CO 2	Demon	strate various physical models through higher order differential equations and solve such
	linear ordinary differential equations.	
CO 3	Construct a variety of partial differential equations and solution by exact methods/method of	
	separation of variables	
CO 4	Explain the applications of infinite series and obtain series solutions of ordinary differential	
	equations.	
CO 5	Apply t	he knowledge of numerical methods in the modeling of various physical and engineering
	phenomena.	

Course	Name	ENGINEERING CHEMISTRY
Course	Code	18CHE12/22
CO 1	Use of	free energy in equilibria, rationalize bulk properties and processes using thermodynamic
	conside	rations, electrochemical energy systems.
CO 2	Causes	& effects of corrosion of metals and control of corrosion. Modification of surface properties
	of meta	als to develop resistance to corrosion, wear, tear, impact etc.by electroplating and
	electroless plating.	
CO 3	Production & consumption of energy for industrialization of country and living standards of	
	people. Electrochemical and concentration cells. Classical, modern batteries and fuel cells.	
	Utilization of solar energy for different useful forms of energy.	
CO 4	Environmental pollution, waste management and water chemistry.	
CO 5	Differen	nt techniques of instrumental methods of analysis. Fundamental principles of nano
	materia	ls.

Course Name		C PROGRAMMING FOR PROBLEM SOLVING
Course Code		18CPS13/23
CO 1	Illustrate simple algorithms from different domains such as mathematics, physics,	
CO 2	Construct a programming solution to the given problem using C.	
CO 3	Identify and correct the syntax and logical errors in C programs.	
CO 4	Modularize the given problem using functions and structures.	

Course	Name	BASIC ELECTRONICS		
Course	Code	18ELN14/24		
CO 1	Describ	e the operation of diodes, BIT, PET and Operational Amplifiers		
CO 2	Design	and explain the construction of rectifiers, regulators, amplifiers and oscillators.		
CO 3	Describe general operating principles of SCRs and its application.			
CO 4	Explain the working and design of Fixed voltage IC regulator using 7805 and A stable oscillator			
	using timer IC 555.			
CO 5	Explain the different number systems and their conversions and construct simple combinational			
	and seq	uential logic circuits using Flip-Flops.		

Course Name		ELEMENTS OF MECHANICAL ENGINEERING			
Course	Code	18ME15/25			
CO 1	Identify	different sources of energy and their conversion process.			
CO 2	Explain the working principle of hydraulic turbines, pumps, IC engines and refrigeration.				
CO 3	Recogn	Recognize various metal joining processes and power transmission elements.			
CO 4	Understand the properties of common engineering materials and their applications in the engineering industry.				
CO 5	Discuss the working of conventional machine tools, machining processes, tools and accessories.				

Course	Name	ENGINEERING CHEMISTRY LABORATORY		
Course Code		18CHEL16/26		
CO 1	Handling different types of instruments for analysis of materials using small quantities of materia			
	involved for quick and accurate results.			
CO 2	Carrying out different types of titrations for estimation of concerns in materials using			
	compara	atively more quantities of materials involved for good results.		

Course Name		C PROGRAMMING LABORATORY		
Course Code		18CPL17/27		
CO 1	Write algorithms, flowcharts and programs for simple problems. Correct syntax and logical error			
	to execute a program.			
CO 2	Write iterative and wherever possible recursive programs			
CO 3	Demonstrate use of functions, arrays, strings, structures and pointers in problem solving.			

Course	Name	TECHNICAL ENGLISH - II					
Course Code		18EGH28					
CO 1	Identify common errors in spoken and written communication						
CO 2	Get familiarized with English vocabulary and language proficiency						
CO 3	Improve nature and style of sensible writing and acquire employment and workplace communication skills						
CO 4	Improve practice	their Technical Communication Skills through Technical Reading and Writing					
CO 5	Perform well in campus recruitment, engineering and all other general competitive examinations.						

Course	Name	TRANSFORM	CALCULUS,	FOURIER	SERIES	AND	NUMERICAL
		TECHNIQUES					
Course	Code	18MAT31					
CO 1	Use La	place transform and	d inverse Laplac	e transform in	solving diffe	erential/ i	integral equations
	arising	in network analysis	, control systems	and other fields	s of engineer	ring.	
CO 2	Demon	strate Fourier series	s to study the be	havior of perio	dic function	s and the	eir applications in
	system	communications, di	gital signal proc	essing and field	theory.		
CO 3	Make u	se of Fourier transfe	orm and Z-transf	orm to illustrate	discrete/ co	ntinuous	function arising
	in wave and heat propagation, signals and systems.						
CO 4	Solve first and second order ordinary differential equations arising in engineering problems usi				g problems using		
	single step and multistep numerical methods.						
CO 5	Determine the extremals of functionals using calculus of variations and solve problems arising in						
	dynamics of rigid bodies and vibrational analysis						

Course	e Name	NETWORK THEORY		
Course	e Code	18EC32		
CO 1	Determine currents and voltages using source transformation/ source shifting/ mesh and reduce given network using star delta transformation/source transformation/ s			
CO 2	Solve network problems by applying Superposition/ Thevenin's/Norton's/ Maximum Power Transfer/ Millman's Network Theorems and electrical laws to reduce circuit complexities and to arrive at feasible solutions			
CO 3	Calculate current and voltages for the given circuit under transient conditions and Apply Laplace transform to solve the given network.			
CO 4	Solve the given network using specified two port network parameters - Z, Y, T & h.			
CO 5	Understand the concept of resonance and determine the parameters that characterize series/parallel Resonant Circuits.			

Course Name		ELECTRONIC DEVICES		
Course Code		18EC33		
CO 1	Understand the principles of semiconductor Physics			
CO 2	Understand the principles and characteristics of different types of semiconductor devices			
CO 3	Understand the fabrication process of semiconductor devices			
CO 4	Utilize the mathematical models of semiconductor junctions for circuits and systems			
CO 5	Identify the mathematical models of MOS transistors for circuits and systems.			

Course Name		DIGITAL SYSTEM DESIGN			
Course Code		18EC34			
CO 1	Explain the concept of combinational and sequential logic circuits.				
CO 2	Analyse and Design the combinational logic circuits.				
CO 3	Describe and characterize flip-flops and its applications.				
CO 4	Design the sequential circuits using SR, JK, D, T flip-flops and Mealy & Moore machines.				
CO 5	Design applications of Combinational & Sequential Circuits				

Course	Course Name		TER ORG	ANIZATION A	AND AF	RCHI	TECTURE			
Course	Code	18EC35								
CO 1	Explair	the basic of	organization	of a computer s	system.					
CO 2	Describ	e the addres	ssing modes	, instruction for	mats and	l prog	ram control s	statement.		
CO 3	Explain different ways of accessing an input <i>I</i> output device including interrupts.									
CO 4	Illustrate the organization of different types of semiconductor and other secondary storage				storage					
	memori	es.								
CO 5	Illustrat	e simple	processor	organization	based	on	hardwired	control	and	micro
	progran	med contr	ol.							

Course Name	POWER ELECTRONICS AND INSTRUMENTATION

Course Code		18EC36			
CO 1	Build and test circuits using power electronic devices.				
CO 2	Analyse and design-controlled rectifier, DC to DC converters, DC to AC inverters and SMPS				
CO 3	Analyse instrument characteristics and errors.				
CO 4	Describe the principle of operation and develop circuits for multi range Ammeters, Voltmeter				
	and Bridges to measure passive component values and frequency.				
CO 5	Explain the principle, design and analyse the transducers for measuring physical parameters				

Course Name		ELECTRONIC DEVICES AND INSTRUMENTATION LABORATORY
Course	Code	18ECL37
CO 1	Recogn	ize and demonstrate functioning of semiconductor power devices.
CO 2	Evaluat	te the characteristics, switching, power conversion and control by
	semicor	nductor power devices.
CO 3	Analyse	the response and plot the characteristics of transducers such as LDR, Photo diode, etc.
CO 4	Design	and test simple electronic circuits for measurement of temperature and resistance
CO 5	Use circuit simulation software for the implementation and characterization of electronic circuit	
	and dev	ices.

Course Name		DIGITAL SYSTEM DESIGN LABORATORY
Course Code		18ECL38
CO 1	O 1 Design, realize and verify De Morgan's Theorem, SOP, POS forms	
CO 2	Demonstrate the truth table of various expressions and combinational circuits using logic gates	
CO 3	Design various combinational circuits such as adders, subtractors, comparators, multiplexers and demultiplexers	
CO 4	Construct flips-flops, counters and shift registers.	
CO 5	Simulate Serial adder and Binary Multiplier.	

Course Name		Aadalitha Kannada (Kannada for Administration)
Course C	Code	18KAK39/49
CO 1		
CO 2		ದಲ್ಲಿ ತಾಂತ್ರಿಕ ವಿಜ್ಞಾನಗಳ ವಿಷಯಕ್ಕೆ ಸಂಬಂಧಿಸಿದ ಹಾಲವರು ವಿಷಯಗಳನ್ನು ಪರಿಚಯ ಕೊಡುವುದು
CO 3		

Course Name		Vyavaharika Kannada (Kannada for Communication)
Course Code		18KVK39/49
CO 1	Underst	and the grammar in Kannada language and their awareness
CO 2	Build co	ommunication skills in day-to-day activities
CO 3	Develop	o interest on Kannada Language and Literature

Course Name		CONSTITUTION OF INDIA, PROFESSIONAL ETHICS AND CYBER LAW
		(CPC)
Course	Code	18CPC39/49
CO 1	Describ	e and analyze the role and salient features of the Indian Constitution
CO 2	Underst	and the structure and powers of the Union and State Executives.
CO 3	Relate to the procedures and provisions in the electoral process	
CO 4	Develop	Engineering and Professional ethics and adopt the responsibilities expected of an
	Engineer	
CO 5	Identify	the cybercrimes and describe the cyber laws for cyber safety measures

Course	Name	ADDITIONAL MATHEMATICS-I
Course	Code	18MATDIP31
CO 1	Apply o	oncepts of complex numbers and vector algebra to analyze the problems arising in related
	area.	
CO 2	Use der	ivatives and partial derivatives to calculate rate of change of multivariate functions
CO 3	Analyze position, velocity and acceleration in two and three dimensions of vector valued	
	function	ns.
CO 4	Learn to	echniques of integration including the evaluation of double and triple integrals.
CO 5	Identify	and solve first order ordinary differential equations.

Course Name		COMPLEX ANALYSIS, PROBABILITY AND STATISTICAL METHODS
Course	Code	18MAT41
CO 1	Use the	concepts of analytic function and complex potentials to solve the problems arising in
	electron	nagnetic field theory.
CO 2	Utilize	conformal transformation and complex integral arising in Aerofoil theory, fluid flow
	visualiz	ation and image processing.
CO 3	Apply	discrete and continuous probability distributions in analyzing the probability models
	arising	in engineering field
CO 4	Make ı	ise of the correlation and regression analysis to fit a suitable mathematical model for the
	statistic	al data.
CO 5	Constru	ct joint probability distributions and demonstrate the validity of testing the hypothesis.

Course Name		ANALOG CIRCUITS
Course	Code	18EC42
CO 1	Underst	and the characteristics of BJTs and FETs.
CO 2	Design	and analyze BIT and FET amplifier circuits.
CO 3	Design	sinusoidal and non-sinusoidal oscillators
CO 4	Under	stand the functioning of linear Cs.
CO 5	5 Design of Linear IC based circuits.	

Course	Name CONTROL SYSTEMS
Course	Code 18EC43
CO 1	Develop the mathematical model of mechanical and electrical systems.
CO 2	Develop transfer function for a given control system using block diagram reduction techniques and
	signal flow graph method.
CO 3	Determine the time domain specifications for first and second order systems.
CO 4	Determine the stability of a system in the time domain using Routh Hurwitz criterion and Root-
	locus technique.
CO 5	Determine the stability of a system in the frequency domain using Nyquist and bode plots.

Course	Name	ENGINEERING STATISTICS and LINEAR ALGEBRA	
Course	Code	18EC44	
CO 1	Analyse	e and evaluate single and multiple random variables.	
CO 2	Identify	and associate Random Variables and Random Processes in Communication events	
CO 3	Analyze	e and model the Random events in typical communication events to extract quantitative	
	statistical parameters.		
CO 4	Analyze and model typical signal sets in terms of a basis function set of Amplitude, phase and		
	frequency		
CO 5	Demonstrate by way of simulation or emulation the ease of analysis employing basis functions,		
	statistical representation and Eigenvalues.		

Course Name	SIGNALS AND SYSTEMS
Course Code	18EC45

CO 1	Analyse the different types of signals and systems.
CO 2	Determine the linearity, causality, time-invariance and stability properties of continuous and
	discrete time systems.
CO 3	Evaluate the convolution sum and integral.
CO 4	Represent continuous and discrete signals & systems in frequency domain using Fourier
	representations.
CO 5	Analyse discrete time signals and systems using Z-transforms.

Course	Name	MICROCONTROLLER
Course Code		18EC46
CO 1	Explain	the difference between Microprocessors & Microcontrollers, Architecture of 8051
	Microco	ontroller, Interfacing of 8051 to external memory and Instruction set of 8051
CO 2	Write 8	O51 Assembly level programs using the 8051 instruction set.
CO 3	Explain the Interrupt system, operation of Timers/Counters and Serial port of 8051.	
CO 4	Write 8051 Assembly language programs to generate square wave on 8051 I/O port pin using	
	interrupt and C Programme to send & receive serial data using 8051 serial port.	
CO 5	Interfac	e simple switches, simple LEDs, ADC 0804, LCD and Stepper Motor to 8051 using 8051
	I/O port	S

Course	Name	MICROCONTROLLER LABORATORY		
Course Code 18ECL47		18ECL47		
CO 1	Enhance programming skills using Assembly language and C.			
CO 2	Write A	Assembly language programs in 8051 for solving simple problems that manipulate input		
	data usi	data using different instructions of 8051.		
CO 3	Interface different input and output devices to 8051 and control them using Assembly language			
	programs.			
CO 4	Interface the serial devices to 8051 and do the serial transfer using C programming.			
CO 5	Develop applications based on Microcontroller 8051.			

Course	e Name ANALOG CIRCUITS LA	ABORATORY	
Course Code 18ECL48			
CO 1	Analyze Frequency response of JFET/MOSFET amplifier.		
CO 2	Design BJT/FETs amplifier with and without feedback and evaluate their performance		
	characteristics		
CO 3	Apply the knowledge gained in the design of BJT/FET circuits in Oscillators		
CO 4	Design analog circuits using OPAMPs for different applications.		
CO 5	Simulate and analyze analog circuits that use ICs for different electronic applications.		

Course	Name	ADDIDONALMATHEMATICS-11
Course	Code	18MATDIP41
CO 1	Solve s	ystems of linear equations using matrix algebra.
CO 2	Apply the knowledge of numerical methods in modelling and solving engineering problems.	
CO 3	Make use of analytical methods to solve higher order differential equations	
CO 4	Classify partial differential equations and solve them by exact methods	
CO 5	Apply elementary probability theory and solve related problems.	

Course Name		TECHNOLOGICAL INNOVATION ENTREPRENEURSHIP	MANAGEMENT	AND
Course Code		18ES51		
CO 1	Understand the fundamental concepts of Management and Entrepreneurship and opportunities in			
	order to set up a business			
CO 2	Identify the various organizations' architecture			

CO 3	Describe the functions of Managers, Entrepreneurs and their social responsibilities
CO 4	Understand the components in developing a business plan
CO 5	Recognize the various sources of funding and institutions supporting entrepreneurs

Course Name		DIGITAL SIGNAL PROCESSING
Course Code 18EC52		18EC52
CO 1	Determine response of LTI systems using time domain and DFT techniques.	
CO 2	Compute DFT of real and complex discrete time signals.	
CO 3	Compute DFT using FFT algorithms and linear filtering approach.	
CO 4	Design and realize FIR and IIR digital filters.	
CO 5	Understand the DSP processor architecture.	

Course Name		PRINCIPLES OF COMMUNICATION SYSTEMS
Course Code		18EC53
CO 1	Analyze and compute performance of AM and FM modulation in the presence of noise at the	
	receiver.	
CO 2	Analyze and compute performance of digital formatting processes with quantization noise	
CO 3	Multiplex digitally formatted signals at Transmitter.	
CO 4	Demultiplex the signals and reconstruct digitally formatted signals at the receiver.	
CO 5	Design /Demonstrate the use of digital formatting in Multiplexers, Vocoders and Video	
	transmission.	

Course	Name	PRINCIPLES OF COMMUNICATION SYSTEMS
Course Code		18EC53
CO 1	Analyze	and compute performance of AM and FM modulation in the presence of noise at the
	receiver.	
CO 2	Analyze and compute performance of digital formatting processes with quantization noise	
CO 3	Multiplex digitally formatted signals at Transmitter.	
CO 4	Demultiplex the signals and reconstruct digitally formatted signals at the receiver.	
CO 5	Design /Demonstrate the use of digital formatting in Multiplexers, Vocoders and Video	
	transmission.	

Course	Name	INFORMATION THEORY and CODING	
Course	Code	18EC54	
CO 1	Explair	n concept of Dependent & Independent Source, measure of information, Entropy, Rate of	
	informa	tion and Order of source	
CO 2	Represe	ent the information using Shannon Encoding, Shannon Fano, Prefix and Huffman Encoding	
	Algorithms		
CO 3	Model	Model the continuous and discrete communication channels using input, output and joint	
	probabilities		
CO 4	Determine a codeword comprising of the check bits computed using Linear Block codes, cyclic		
	codes & convolutional codes		
CO 5	Design the encoding and decoding circuits for Linear Block codes, cyclic codes, convolutional		
	codes, BCH and Golay codes.		

Course	Name	ELECTROMAGNETIC WAVES	
Course Code 18EC5		18EC55	
CO 1	Evaluate problems on electrostatic force, electric field due to point, linear, volume charges by		
	applying conventional methods and charge in a volume.		
CO 2	Apply (Apply Gauss law to evaluate Electric fields due to different charge distributions and Volume	
	Charge distribution by using Divergence Theorem.		
CO 3	Determine potential and energy with respect to point charge and capacitance using Laplace		
	equation and Apply Biot-Savart's and Ampere's laws for evaluating Magnetic field for different		
	current	configurations	

CO 4	Calculate magnetic force, potential energy and Magnetization with respect to magnetic materials
	and voltage induced in electric circuits.
CO 5	Apply Maxwell's equations for time varying fields, EM waves in free space and conductors and
	Evaluate power associated with EM waves using Poynting theorem

Course Name		Verilog HDL	
Course Code		18EC56	
CO 1	Write V	Verilog programs in gate, dataflow (RTL), behavioural and switch modelling levels of	
	Abstrac	tion.	
CO 2	Design and verify the functionality of digital circuit/system using test benches.		
CO 3	Identify the suitable Abstraction level for a particular digital design.		
CO 4	Write the programs more effectively using Verilog tasks, functions and directives.		
CO 5	Perform timing and delay Simulation and Interpret the various constructs in logic synthesis.		

Course Name		DIGITAL SIGNAL PROCESSING LABORATORY	
Course Code		18ECL57	
CO 1	Underst	and the concepts of analog to digital conversion of signals and frequency domain sampling	
	of signa	ls.	
CO 2	Model the discrete time signals and systems and verify its properties and results.		
CO 3	Implement discrete computations using a DSP processor and verify the results.		
CO 4	Realize the digital filters using a simulation tool and analyze the response of the filter for an audio		
	signal.		
CO 5	Write programs using Matlab I Scilab/Octave to illustrate DSP concepts.		

Course Name		DIGITAL SIGNAL PROCESSING LABORATORY		
Course	Code	18ECL57		
CO 1	Underst	and the concepts of analog to digital conversion of signals and frequency domain sampling		
	of signa	ıls.		
CO 2	Model the discrete time signals and systems and verify its properties and results.			
CO 3	Implement discrete computations using a DSP processor and verify the results.			
CO 4	Realize the digital filters using a simulation tool and analyze the response of the filter for an audio			
	signal.			
CO 5	Write programs using Matlab I Scilab/Octave to illustrate DSP concepts.			

Course Name		HDL Laboratory
Course	Code	18ECL58
CO 1	Write th	ne Verilog/VHDL programs to simulate Combinational circuits in Dataflow, Behavioural
	and Gat	e level Abstractions.
CO 2	Describe sequential circuits like flip flops and counters in Behavioural description and obtain	
	simulation waveforms.	
CO 3	Use FPGA/CPLD kits for downloading Verilog codes and check output.	
CO 4	Synthesize Combinational and Sequential circuits on programmable ICs and test the hardware.	
CO 5	Interface the hardware to the programmable chips and obtain the required output	

Course Name		ENV	IRONM	ENTAL ST	JDIES						
Course Code		18CI	V59								
CO 1	Underst	and th	e princip	les of ecolog	y and	environme	ental issues th	at apply to	o air, lai	nd, ar	nd water
	issues o	n a glo	bal scale								
CO 2			alysis of	a pro	oblem or						
	question related to the environment										
CO 3	Demons	Demonstrate ecology knowledge of a complex relationship between biotic and biotic									
	compon	ents.									

CO 4	Apply their ecological knowledge to illustrate and graph a problem and describe the realities that
	managers face when dealing with complex issues.
CO 5	Relate to the latest Developments in Environmental Pollution Mitigation Tools.

Course Name		DIGITAL COMMUNICATION
Course Code		18EC61
CO 1	Associa	te and apply the concepts of Bandpass sampling towel specified signals and channels.
CO 2	Analyze	e and compute performance parameters and transfer rates for low pass and bandpass symbol
	under ic	leal and corrupted non band limited channels
CO 3	Test and validate symbol processing and performance parameters at the receiver under ideal and	
	corrupted bandlimited channels.	
CO 4	Demonstrate that bandpass signals subjected to corruption and distortion in a bandlimited channel	
	can be processed at the receiver to meet specified performance criteria.	
CO 5	Understand the principles of spread spectrum communications	

Course Name		EMBEDDED SYSTEMS		
Course Code		18EC62		
CO 1	Describe the architectural features and instructions of 32bit microcontroller ARM CortexM3.			
CO 2	Apply the knowledge gained for Programming ARM Cortex M3 for different applications.			
CO 3	Understand the basic hardware components and their selection method based on the			
	characteristics and attributes of an embedded system.			
CO 4	Develop the hardware software co-design and firmware design approaches.			
CO 5	Explain the need of real time operating system for embedded system applications			

Course Name		MICROWAVE and ANTENNAS
Course Code		18EC63
CO 1	Describ	e the use and advantages of microwave transmission
CO 2	Analyze various parameters related to microwave transmission lines and waveguides	
CO 3	Identify microwave devices for several applications	
CO 4	Analyze various antenna parameters necessary for building a RF system	
CO 5	Recom	mend various antenna configurations according to the applications

Course Name		OPERATING SYSTEM	
Course Code		18EC641	
CO 1	Explain	the goals, structure, operation and types of operating systems.	
CO 2	Apply scheduling techniques to find performance factors.		
CO 3	Explain organization of file systems and roles.		
CO 4	Apply suitable techniques for contiguous and non-contiguous memory allocation		
CO 5	Describe message passing, deadlock detection and prevention methods.		

Course Name		PROGRAMMING IN JAVA
Course Code		18CS653
CO 1 Explain the object-oriented concepts and JAV		the object-oriented concepts and JAV
CO 2	Develop computer programs to solve real world problems in Java	
CO 3	Develop	simple GUI interfaces for a computer program to interact with users

Course Name		EMBEDDED SYSTEMS LABORATORY	
Course Code		18ECL66	
CO 1	Underst	and the instruction set of 32 bit microcontroller ARM Cortex M3, and the software tool	
	required for programming in Assembly and C language.		
CO 2	Develop	Develop assembly language programs using ARM Cortex M3 for different applications.	
CO 3	Interface external devices and VO with ARM Cortex M3.		
CO 4	Develop C language programs and library functions for embedded system applications.		

CO 5	Analyze the functions of various peripherals, peripheral registers and power saving modes of
	ARM Cortex M3

Course Name		COMMUNICATION LABORATORY		
Course	e Code	18ECL67		
CO 1	Design and test circuits for analog modulation and demodulation schemes viz., AM, FM, etc			
CO 2	Determine the characteristics and response of microwave waveguide.			
CO 3	Determine characteristics of microstrip antennas and devices & compute the parameters associated with it.			
CO 4	Design and test the digital and analog modulation circuits and display the waveforms.			
CO 5	Simulate the digital modulation systems and compare the error performance of basic digital modulation schemes.			

Course Name		COMPUTER NETWORKS		
Course	Code	18EC71		
CO 1	Underst	Understand the concepts of networking.		
CO 2	Describe the various networking architectures.			
CO 3	Identify the protocols and services of different layers.			
CO 4	Distinguish the basic network configurations and standards associated with each network.			
CO 5	Analyze a simple network and measure its parameters			

Course	Name	VLSI DESIGN			
Course	Code	18EC72			
CO 1	Demons	strate understanding of MOS transistor theory, CMOS fabrication flow and technology			
	scaling.				
CO 2	Draw the basic gates using the stick and layout diagrams with the knowledge of physical design				
	aspects.				
CO 3	Demonstrate ability to design Combinational, sequential and dynamic logic circuits as per the				
	requirements				
CO 4	Interpret Memory elements along with timing considerations				
CO 5	Interpret testing and testability issues in VLSI Design				

Course	e Name	REAL TIME SYSTEM			
Course	e Code	18EC731			
CO 1	Explain	Explain the fundamentals of Real time systems and its classifications			
CO 2	Understand the concepts of computer control and the suitable computer hardware requirements for				
	real-time applications.				
CO 3	Describ	Describe the operating system concepts and techniques required for real time systems			
CO 4	Develop the software algorithms using suitable languages to meet Real time applications.				
CO 5	Apply suitable methodologies to design and develop Real-Time Systems.				

Course Name		CRYPTOGRAPHY	
Course	Code	18EC744	
CO 1	Explain basic cryptographic algorithms to encrypt and decrypt the data.		
CO 2	Use symmetric and asymmetric cryptography algorithms to encrypt and decrypt the information.		
CO 3	Describe the mathematics associated with cryptography.		
CO 4	Apply concepts of modern algebra in cryptography algorithms.		
CO 5	Apply pseudo random sequence in stream cipher algorithms.		

Course Name		ENVIRONMENTAL PROTECTION AND MANAGEMENT		
Course	18CV753			
CO 1	CO 1 Appreciate the elements of Corporate Environmental Management systems complying			
	international environmental management system standards.			
CO 2	Lead pollution prevention assessment team and implement waste minimization options			
CO 3	Develop, Implement, maintain and Audit Environmental Management systems for Organizations.			

Course Name		ENVIRONME	ENTAL PR	ROTE	CTION	AND MANAGI	EMENT		
Course	Code	18CV753							
CO 1	Appreciate the elements of Corporate Environmental Management systems complying to			ng to					
	international environmental management system standards.								
CO 2	Lead pollution prevention assessment team and implement waste minimization options								
CO 3	Develop	, Implement,	maintain	and	Audit	Environmental	Management	systems	for
	Organiz	Organizations.							

Course Name		COMPUTER NETWORKS LAB	
Course	Code	18ECL76	
CO 1	Choose suitable tools to model a network		
CO 2	Use the network simulator for learning and practice of networking algorithms		
CO 3	Illustrate the operations of network protocols and algorithms using C programming.		
CO 4	Simulate the network with different configurations to measure the performance parameters.		
CO 5	Implement the data link and routing protocols using C programming		

Course	Name	VLSI LABORATORY	
Course	Code	18ECL77	
CO 1	Design	and simulate combinational and sequential digital circuits using VerilogHDL	
CO 2	Understand the Synthesis process of digital circuits using the EDA tool.		
CO 3	Perform ASIC design flow and understand the process of synthesis, synthesis constraints and		
	evaluating the synthesis reports to obtain optimum gate level netlist		
CO 4	Design and simulate basic CMOS circuits like inverter, common source amplifier and differential		
	amplifiers.		
CO 5	Perform RTL-GDSII flow and understand the stages in ASIC design.		

Course	Name	WIRELESS and CELLULAR COMMUNICATION		
Course Code		18EC81		
CO 1	Underst	and the Communication theory both Physical and networking associated with GSM,		
	CDMA	& LTE 4G systems.		
CO 2	Explain	concepts of propagation mechanisms like Reflection, Diffraction, Scattering in wireless		
	channels.			
CO 3	Develop	Develop a scheme for idle mode, call set up, call progress handling and call tear down in a GSM		
	cellular network.			
CO 4	Develop a scheme for idle mode, call set up, call progress handling and call tear down in a CDMA			
	cellular	network.		
CO 5	Understand the Basic operations of Air interface in a LTE 4G system			

Course Name		RADAR ENGINEERING		
Course Code		18EC823		
CO 1	Describ	Describe the radar fundamentals.		
CO 2	Analyze the radar signals.			
CO 3	Explain the working principle of pulse Doppler radars, their applications and limitations.			
CO 4	Describe the working of various radar transmitters and receivers			
CO 5	Analyze the range parameters of pulse radar system which affect the sys tem performance			