

Course Outcomes

(COs)

2018 Scheme

Course Name		CALCULUS AND LINEAR ALGEBRA
Course Code		18MAT11
CO 1	Apply t	he C knowledge of calculus to solve problems related to polar curves and its applications
001	in deter	mining the bentness of a curve.
CO_2	Learn th	he notion of partial differentiation to calculate rates of change of multivariate functions and
02	solve p	roblems related to composite functions and Jacobians.
CO 3	Apply t	the concept of change of order of integration and variables to evaluate multiple integrals
	and the	ir usage in computing the area and volumes.
CO 4	Solve first order linear/nonlinear differential equation analytically using standard methods	
CO 5	Make u	se of matrix theory for solving system of linear equations and compute eigenvalues and
05	eigenve	ectors required for matrix diagonalization process.

Course	Name	ENGINEERING PHYSICS
Course Code		18PHY12/21
CO 1	Underst	and various types of oscillations and their implications, the role of Shock waves in various
	fields an	nd recognize the elastic properties of materials for engineering applications
CO 2	2 Realize the interrelation between time varying electric field and magnetic field, the transverse	
	nature of the EM waves and their role in optical fiber communication.	
CO 3	Compute Eigen values, Eigen functions, momentum of Atomic and subatomic particles using	
	Time independent 1-D Schrodinger's wave equation.	
CO 4	Apprehend theoretical background of laser, construction and working of different types of lasers	
	and its applications in different fields	
CO 5	Underst	and various electrical and thermal properties of materials like conductors, semiconductors
	and die	ectrics using different theoretical models.

Course Name		BASIC ELECTRICAL ENGINEERING
Course	Code	18ELE13/23
CO 1	Analyse	e D.C and A.C circuits.
CO 2	Explain the principle of operation and construction of single-phase transformers.	
CO 3	Explain the principle of operation and construction of DC machines and synchronous machines.	
CO 4	Explain the principle of operation and construction of three phase induction motors.	
CO 5	Discuss	concepts of electrical wiring, circuit protecting devices and earthing.

Course Name		ELEMENTS OF CIVIL ENGINEERING AND MECHANICS
Course	Code	18CIV 14/24
CO 1 Mentio		n the applications of various fields of Civil Engineering
CO 2	Compute the resultant of a given force system subjected to various loads.	
CO 3	Comprehend the action of Forces, Moments and other loads on systems of rigid bodies and	
	compute the reactive forces that develop as a result of the external loads.	
CO 4	Locate the Centroid and compute the Moment of Inertia of regular and built-up sections.	
CO 5	Express the relationship between the motion of bodies and analyze the bodies in motion	

Course Name		ENGINEERING GRAPHICS
Course	Code	18EGDL15/25
CO 1	Prepare	engineering drawings as per BIS conventions mentioned in the relevant codes.
CO 2	Produce computer generated drawings using CAD software	
CO 3	Use the knowledge of orthographic projections to represent engineering information <i>I</i> concepts	
	and present the same in the form of drawings.	

Course Name	ENGINEERING PHYSICS LABORATORY	
Course Code	18PHYL16/26	
CO 1 App	ehend the concepts of interference of light, diffraction of light, Fermi energy and magnetic	
effec	effect of current	

CO 2	Understand the principles of operations of optical fibers and semiconductor devices such as
	Photodiode, and NPN transistor using simple circuits
CO 3	Determine elastic moduli and moment of inertia of given materials with the help of suggested
	procedures
CO 4	Recognize the resonance concept and its practical applications
CO 5	Understand the importance of measurement procedure, honest recording and representing the
	data, reproduction of final results

Course Name		BASIC ELECTRICAL ENGINEERING LABORATORY
Course Code		18ELEL17/27
CO 1	1 Identify the common electrical components and measuring instruments used for cond	
	experin	nents in the electrical laboratory.
CO 2	Compare power factor of lamps	
CO 3	Determine impedance of an electrical circuit and power consumed in a 3 phase load.	
CO 4	Determine earth resistance and understand two way and three way control Of lamps.	

Course Name		TECHNICAL ENGLISH - I
Course Code		18EGH18
CO 1	Use gra	mmatical English and essentials of language skills and identify the nuances of phonetics,
	intonati	on and flawless pronunciation
CO 2	Implem	ent English vocabulary at command and language proficiency
CO 3	Identify	common errors in spoken and written communication
CO 4	Understand and improve the nonverbal communication and kinesics	
CO 5	Perform	well in campus recruitment, engineering and all other general competitive examinations

Course	Name	ADVANCED CALCULUS AND NUMERICAL METHODS
Course Code		18MAT21
CO 1	Illustrat	e the applications of multivariate calculus to understand the solenoidal and irrotational
	vectors	and also exhibit the interdependence of line, surface and volume integrals.
CO 2	Demonstrate various physical models through higher order differential equations and solve such	
	linear ordinary differential equations.	
CO 3	Construct a variety of partial differential equations and solution by exact methods/method of	
	separation of variables	
CO 4	Explain	the applications of infinite series and obtain series solutions of ordinary differential
	equation	ns.
CO 5	Apply t	he knowledge of numerical methods in the modeling of various physical and engineering
	phenom	iena.

Course	Name	ENGINEERING CHEMISTRY
Course Code		18CHE12/22
CO 1	Use of	free energy in equilibria, rationalize bulk properties and processes using thermodynamic
	conside	rations, electrochemical energy systems.
CO 2	Causes	& effects of corrosion of metals and control of corrosion. Modification of surface properties
	of meta	als to develop resistance to corrosion, wear, tear, impact etc.by electroplating and
	electroless plating.	
CO 3	Product	ion & consumption of energy for industrialization of country and living standards of
	people.	Electrochemical and concentration cells. Classical, modern batteries and fuel cells.
	Utilizat	ion of solar energy for different useful forms of energy.
CO 4	Enviror	mental pollution, waste management and water chemistry.
CO 5	Differe	nt techniques of instrumental methods of analysis. Fundamental principles of nano
	materia	ls.

Course Name		C PROGRAMMING FOR PROBLEM SOLVING
Course Code		18CPS13/23
CO 1	Illust	ate simple algorithms from different domains such as mathematics, physics, etc.
CO 2	Construct a programming solution to the given problem using C.	
CO 3	Identify and correct the syntax and logical errors in C programs.	
CO 4	Modularize the given problem using functions and structures.	

Course Name		BASIC ELECTRONICS		
Course Code		18ELN14/24		
CO 1	Describ	e the operation of diodes, BIT, PET and Operational Amplifiers		
CO 2	Design	and explain the construction of rectifiers, regulators, amplifiers and oscillators.		
CO 3	Describe general operating principles of SCRs and its application.			
CO 4	Explain the working and design of Fixed voltage IC regulator using 7805 and A stable oscillator			
	using timer IC 555.			
CO 5	Explain the different number systems and their conversions and construct simple combinational			
	and seq	uential logic circuits using Flip-Flops.		

Course Name		ELEMENTS OF MECHANICAL ENGINEERING		
Course	Code	18ME15/25		
CO 1	1 Identify different sources of energy and their conversion process.			
CO 2	Explain the working principle of hydraulic turbines, pumps, IC engines and refrigeration.			
CO 3	Recognize various metal joining processes and power transmission elements.			
CO 4	Understand the properties of common engineering materials and their applications in the			
	engineering industry.			
CO 5	Discuss the working of conventional machine tools machining processes tools and accessories			

Course Name		ENGINEERING CHEMISTRY LABORATORY				
Course	Code	18CHEL16/26				
CO 1	Handling different types of instruments for analysis of materials using small quantities of materials					
	involve	olved for quick and accurate results.				
CO 2	Carryin	g out different types of titrations for estimation of concerns in materials using				
	comparatively more quantities of materials involved for good results.					

Course Name		C PROGRAMMING LABORATORY		
Course	Code	18CPL17/27		
CO 1	1 Write algorithms, flowcharts and programs for simple problems. Correct syntax and logical en			
	to execute a program.			
CO 2	Write iterative and wherever possible recursive programs			
CO 3	Demonstrate use of functions, arrays, strings, structures and pointers in problem solving.			

Course Name		TECHNICAL ENGLISH - II				
Course Code 18EGH28						
CO 1	Identify common errors in spoken and written communication					
CO 2	Get familiarized with English vocabulary and language proficiency					
CO 3	Improve nature and style of sensible writing and acquire employment and workplace					
	communication skills					
CO 4	Improv	e their Technical Communication Skills through Technical Reading and Writing				
	practices					
CO 5	Perform well in campus recruitment, engineering and all other general competitive examinations.					

Course Name	TRANSFORM	CALCULUS,	FOURIER	SERIES	AND	NUMERICAL
	TECHNIQUES					
Course Code	18MAT31					
L						

CO 1	Use Laplace transform and inverse Laplace transform in solving differential/ integral equations arising in network analysis, control systems and other fields of engineering.
CO 2	Demonstrate Fourier series to study the behavior of periodic functions and their applications in system communications, digital signal processing and field theory.
CO 3	Make use of Fourier transform and Z-transform to illustrate discrete/ continuous function arising in wave and heat propagation, signals and systems.
CO 4	Solve first and second order ordinary differential equations arising in engineering problems using single step and multistep numerical methods.
CO 5	Determine the extremals of functionals using calculus of variations and solve problems arising in dynamics of rigid bodies and vibrational analysis

Course Name		NETWORK THEORY		
Course Code		18EC32		
CO 1	Determ and red	ine currents and voltages using source transformation/ source shifting/ mesh/ nodal analysis uce given network using star delta transformation/source transformation/ source shifting.		
CO 2	Solve network problems by applying Superposition/ Thevenin's/Norton's/ Maximum Power Transfer/ Millman's Network Theorems and electrical laws to reduce circuit complexities and to arrive at feasible solutions			
CO 3	Calculate current and voltages for the given circuit under transient conditions and Apply Laplace transform to solve the given network.			
CO 4	Solve the given network using specified two port network parameters - Z, Y, T & h.			
CO 5	Underst series/p	and the concept of resonance and determine the parameters that characterize arallel Resonant Circuits.		

Course Name		ELECTRONIC DEVICES		
Course	Code	18EC33		
CO 1	0.1 Understand the principles of semiconductor Physics			
CO 2	Understand the principles and characteristics of different types of semiconductor devices			
CO 3	Understand the fabrication process of semiconductor devices			
CO 4	Utilize the mathematical models of semiconductor junctions for circuits and systems			
CO 5	Identify the mathematical models of MOS transistors for circuits and systems.			

Course Name		DIGITAL SYSTEM DESIGN
Course Code		18EC34
CO 1 Explain the concept of combinational and sequential logic circuits.		the concept of combinational and sequential logic circuits.
CO 2	CO 2 Analyse and Design the combinational logic circuits.	
CO 3	CO 3 Describe and characterize flip-flops and its applications.	
CO 4	O 4 Design the sequential circuits using SR, JK, D, T flip-flops and Mealy & Moore machines.	
CO 5 Design applications of Combinational & Sequential Circuits		applications of Combinational & Sequential Circuits

Course Name		COMPUT	TER ORGA	ANIZATION A	AND AR	CHI	TECTURE			
Course	Code	18EC35								
CO 1	Explain	the basic c	organization	of a computer s	ystem.					
CO 2	Describe the addressing modes, instruction formats and program control statement.									
CO 3	Explain different ways of accessing an input <i>I</i> output device including interrupts.									
CO 4	Illustrate the organization of different types of semiconductor and other secondary storage				storage					
	memories.									
CO 5	Illustrat	e simple	processor	organization	based	on	hardwired	control	and	micro
	progran	imed control	ol.							

Course Name		POWER ELECTRONICS AND INSTRUMENTATION
Course Code		18EC36
CO 1 Build and test circuits using power electronic devices.		

CO 2	Analyse and design-controlled rectifier, DC to DC converters, DC to AC inverters and SMPS
CO 3	Analyse instrument characteristics and errors.
CO 4	Describe the principle of operation and develop circuits for multi range Ammeters, Voltmeters
	and Bridges to measure passive component values and frequency.
CO 5	Explain the principle, design and analyse the transducers for measuring physical parameters

Course Name		ELECTRONIC DEVICES AND INSTRUMENTATION LABORATORY
Course	Code	18ECL37
CO 1	Recogn	ize and demonstrate functioning of semiconductor power devices.
CO 2	2 Evaluate the characteristics, switching, power conversion and control by	
	semicor	nductor power devices.
CO 3	Analyse	e the response and plot the characteristics of transducers such as LDR, Photo diode, etc.
CO 4	Design and test simple electronic circuits for measurement of temperature and resistance	
CO 5	5 Use circuit simulation software for the implementation and characterization of electronic circuits	
	and dev	rices.

Course Name		DIGITAL SYSTEM DESIGN LABORATORY	
Course	Code	18ECL38	
CO 1	Design,	realize and verify De Morgan's Theorem, SOP, POS forms	
CO 2	Demonstrate the truth table of various expressions and combinational circuits using logic gates		
CO 3	Design various combinational circuits such as adders, subtractors, comparators, multiplexers and		
	demulti	plexers	
CO 4	Constru	ct flips-flops, counters and shift registers.	
CO 5	Simulat	e Serial adder and Binary Multiplier.	

Course Name		Adlitha Kannada

Course Name	Vyavaharika Kannada
Course Code	18KVK28/39/49

Course Name		CONSTITUTION OF INDIA, PROFESSIONAL ETHICS AND CYBER LAW	
		(CPC)	
Course	Code	18CPC39/49	
CO 1	Describ	e and analyze the role and salient features of the Indian Constitution	
CO 2	Understand the structure and powers of the Union and State Executives.		
CO 3	Relate to the procedures and provisions in the electoral process		
CO 4	Develop Engineering and Professional ethics and adopt the responsibilities expected of an		
	Engineer		
CO 5	Identify	the cybercrimes and describe the cyber laws for cyber safety measures	

Course Name	ADDITIONAL MATHEMATICS-I		
Course Code	18MATDIP31		
D (CEI		р	6 612

CO 1	Apply concepts of complex numbers and vector algebra to analyze the problems arising in related
	area.
CO 2	Use derivatives and partial derivatives to calculate rate of change of multivariate functions
CO 3	Analyze position, velocity and acceleration in two and three dimensions of vector valued
	functions.
CO 4	Learn techniques of integration including the evaluation of double and triple integrals.
CO 5	Identify and solve first order ordinary differential equations.

Course	Name	COMPLEX ANALYSIS, PROBABILITY AND STATISTICAL METHODS
Course	Code	18MAT41
CO 1	Use the	e concepts of analytic function and complex potentials to solve the problems arising in
	electron	nagnetic field theory.
CO 2	Utilize conformal transformation and complex integral arising in Aerofoil theory, fluid flow	
	visualiz	ation and image processing.
CO 3	Apply discrete and continuous probability distributions in analyzing the probability models	
	arising	in engineering field
CO 4	Make u	se of the correlation and regression analysis to fit a suitable mathematical model for the
	statistic	al data.
CO 5	Constru	ct joint probability distributions and demonstrate the validity of testing the hypothesis.

Course	Name	ANALOG CIRCUITS
Course	Code	18EC42
CO 1	Underst	and the characteristics of BJTs and FETs.
CO 2	Design	and analyze BIT and FET amplifier circuits.
CO 3	Design	sinusoidal and non-sinusoidal oscillators
CO 4	Under	stand the functioning of linear Cs.
CO 5	Design	of Linear IC based circuits.

Course Name		CONTROL SYSTEMS
Course	Code	18EC43
CO 1	Develo	the mathematical model of mechanical and electrical systems.
CO 2	Develop transfer function for a given control system using block diagram reduction techniques and	
	signal f	low graph method.
CO 3	Determ	ine the time domain specifications for first and second order systems.
CO 4	Determine the stability of a system in the time domain using Routh Hurwitz criterion and Root-	
	locus te	chnique.
CO 5	Determ	ine the stability of a system in the frequency domain using Nyquist and bode plots.

Course Name		ENGINEERING STATISTICS and LINEAR ALGEBRA	
Course Code		18EC44	
CO 1	Analyse	e and evaluate single and multiple random variables.	
CO 2	Identify and associate Random Variables and Random Processes in Communication events		
CO 3	Analyze and model the Random events in typical communication events to extract quantitative		
	statistical parameters.		
CO 4	Analyze and model typical signal sets in terms of a basis function set of Amplitude, phase and		
	frequency		
CO 5	Demonstrate by way of simulation or emulation the ease of analysis employing basis functions,		
	statistic	al representation and Eigenvalues.	

Course Name		SIGNALS AND SYSTEMS
Course Code		18EC45
CO 1	Analyse	the different types of signals and systems.

CO 2	Determine the linearity, causality, time-invariance and stability properties of continuous and
	discrete time systems.
CO 3	Evaluate the convolution sum and integral.
CO 4	Represent continuous and discrete signals & systems in frequency domain using Fourier
	representations.
CO 5	Analyse discrete time signals and systems using Z-transforms.

Course	Name	MICROCONTROLLER
Course Code		18EC46
CO 1	Explain	the difference between Microprocessors & Microcontrollers, Architecture of 8051
	Microco	ontroller, Interfacing of 8051 to external memory and Instruction set of 8051
CO 2	Write 8051 Assembly level programs using the 8051 instruction set.	
CO 3	Explain the Interrupt system, operation of Timers/Counters and Serial port of 8051.	
CO 4	Write 8051 Assembly language programs to generate square wave on 8051 I/O port pin using	
	interrup	t and C Programme to send & receive serial data using 8051 serial port.
CO 5	Interfac	e simple switches, simple LEDs, ADC 0804, LCD and Stepper Motor to 8051 using 8051
	I/O port	is a second s

Course Name		MICROCONTROLLER LABORATORY
Course Code		18ECL47
CO 1	Enhanc	e programming skills using Assembly language and C.
CO 2	Write A	Assembly language programs in 8051 for solving simple problems that manipulate input
	data usi	ng different instructions of 8051.
CO 3	Interface different input and output devices to 8051 and control them using Assembly language	
	programs.	
CO 4	Interfac	e the serial devices to 8051 and do the serial transfer using C programming.
CO 5	Develo	o applications based on Microcontroller 8051.

Course	Name	ANALOG CIRCUITS LABORATORY
Course	Code	18ECL48
CO 1	Analyze	e Frequency response of JFET/MOSFET amplifier.
CO 2	Design	BJT/FETs amplifier with and without feedback and evaluate their performance
	characte	eristics
CO 3	Apply t	he knowledge gained in the design of BJT/FET circuits in Oscillators
CO 4	Design	analog circuits using OPAMPs for different applications.
CO 5	Simulat	e and analyze analog circuits that use ICs for different electronic applications.

Course Name		ADDIDONALMATHEMATICS-11
Course	Code	18MATDIP41
CO 1	Solve s	ystems of linear equations using matrix algebra.
CO 2	Apply the knowledge of numerical methods in modelling and solving engineering problems.	
CO 3	Make use of analytical methods to solve higher order differential equations	
CO 4	Classify	v partial differential equations and solve them by exact methods
CO 5	Apply e	elementary probability theory and solve related problems.

Course	Name	TECHNOLOGICAL INNOVATION	MANAGEMENT	AND
		ENTREPRENEURSHIP		
Course Code		18ES51		
CO 1	Understand the fundamental concepts of Management and Entrepreneurship and opportunities		ortunities in	
	order to set up a business			
CO 2	Identify the various organizations' architecture			
CO 3	Describe the functions of Managers, Entrepreneurs and their social responsibilities			
_			_	

CO 4	Understand the components in developing a business plan
CO 5	Recognize the various sources of funding and institutions supporting entrepreneurs

Course	Name	DIGITAL SIGNAL PROCESSING
Course	Code	18EC52
CO 1	Determ	ine response of LTI systems using time domain and DFT techniques.
CO 2	Compute DFT of real and complex discrete time signals.	
CO 3	Compute DFT using FFT algorithms and linear filtering approach.	
CO 4	Design	and realize FIR and IIR digital filters.
CO 5	Underst	and the DSP processor architecture.

Course Name		PRINCIPLES OF COMMUNICATION SYSTEMS
Course	Code	18EC53
CO 1	Analyze	e and compute performance of AM and FM modulation in the presence of noise at the
	receiver	
CO 2	Analyze and compute performance of digital formatting processes with quantization noise	
CO 3	Multiplex digitally formatted signals at Transmitter.	
CO 4	Demult	plex the signals and reconstruct digitally formatted signals at the receiver.
CO 5	Design	/Demonstrate the use of digital formatting in Multiplexers, Vocoders and Video
	transmi	ssion.

Course	Name	PRINCIPLES OF COMMUNICATION SYSTEMS
Course	Code	18EC53
CO 1	Analyze	e and compute performance of AM and FM modulation in the presence of noise at the
	receiver	
CO 2	Analyze and compute performance of digital formatting processes with quantization noise	
CO 3	Multiplex digitally formatted signals at Transmitter.	
CO 4	Demult	plex the signals and reconstruct digitally formatted signals at the receiver.
CO 5	Design	/Demonstrate the use of digital formatting in Multiplexers, Vocoders and Video
	transmi	ssion.

Course	Name	INFORMATION THEORY and CODING
Course	Code	18EC54
CO 1	Explain	n concept of Dependent & Independent Source, measure of information, Entropy, Rate of
	informa	tion and Order of source
CO 2	Represe	ent the information using Shannon Encoding, Shannon Fano, Prefix and Huffman Encoding
	Algorit	hms
CO 3	Model	the continuous and discrete communication channels using input, output and joint
	probabi	lities
CO 4	Deterr	nine a codeword comprising of the check bits computed using Linear Block codes, cyclic
	codes &	z convolutional codes
CO 5	Design	the encoding and decoding circuits for Linear Block codes, cyclic codes, convolutional
	codes, l	3CH and Golay codes.

Course	Name	ELECTROMAGNETIC WAVES			
Course	Code	18EC55			
CO 1	Evaluat	e problems on electrostatic force, electric field due to point, linear, volume charges by			
	applyin	g conventional methods and charge in a volume.			
CO 2	Apply Gauss law to evaluate Electric fields due to different charge distributions and Volume				
	Charge distribution by using Divergence Theorem.				
CO 3	Determine potential and energy with respect to point charge and capacitance using Laplace				
	equation and Apply Biot-Savart's and Ampere's laws for evaluating Magnetic field for different				
	current configurations				

CO 4	Calculate magnetic force, potential energy and Magnetization with respect to magnetic materials
	and voltage induced in electric circuits.
CO 5	Apply Maxwell's equations for time varying fields, EM waves in free space and conductors and
	Evaluate power associated with EM waves using Poynting theorem

Course	Name	Verilog HDL	
Course	Code	18EC56	
CO 1	Write V	Verilog programs in gate, dataflow (RTL), behavioural and switch modelling levels of	
	Abstraction.		
CO 2	Design and verify the functionality of digital circuit/system using test benches.		
CO 3	Identify the suitable Abstraction level for a particular digital design.		
CO 4	Write the programs more effectively using Verilog tasks, functions and directives.		
CO 5	Perform timing and delay Simulation and Interpret the various constructs in logic synthesis.		

Course	Name	DIGITAL SIGNAL PROCESSING LABORATORY		
Course	Code	18ECL57		
CO 1	Underst	and the concepts of analog to digital conversion of signals and frequency domain sampling		
	of signals.			
CO 2	Model the discrete time signals and systems and verify its properties and results.			
CO 3	Implement discrete computations using a DSP processor and verify the results.			
CO 4	Realize the digital filters using a simulation tool and analyze the response of the filter for an audio			
	signal.			
CO 5	Write p	rograms using Matlab I Scilab/Octave to illustrate DSP concepts.		

Course Name		DIGITAL SIGNAL PROCESSING LABORATORY		
Course	Code	18ECL57		
CO 1	Understand the concepts of analog to digital conversion of signals and frequency domain sampling			
	of signa	ls.		
CO 2	Model the discrete time signals and systems and verify its properties and results.			
CO 3	Implement discrete computations using a DSP processor and verify the results.			
CO 4	Realize the digital filters using a simulation tool and analyze the response of the filter for an audio			
	signal.			
CO 5	Write programs using Matlab I Scilab/Octave to illustrate DSP concepts.			

Course Name		HDL Laboratory	
Course	Code	18ECL58	
CO 1	Write th	ne Verilog/VHDL programs to simulate Combinational circuits in Dataflow, Behavioural	
	and Gat	e level Abstractions.	
CO 2	Describe sequential circuits like flip flops and counters in Behavioural description and obtain		
	simulation waveforms.		
CO 3	Use FPGA/CPLD kits for downloading Verilog codes and check output.		
CO 4	Synthesize Combinational and Sequential circuits on programmable ICs and test the hardware.		
CO 5	Interface the hardware to the programmable chips and obtain the required output		

Course Name		ENV	IRONM	ENTAL STU	JDIF	ES						
Course Code		18CI	V59									
CO 1	Underst	and th	e princip	les of ecolog	y and	d e	environme	ntal issues th	at apply to	o air, la	nd, ar	nd water
	issues o	n a glo	obal scale	•								
CO 2	2 Develop critical thinking and/or observation skills, and apply them to the analysis of a problem		blem or									
	question related to the environment											
CO 3	Demons	strate	ecology	knowledge	of	a	complex	relationship	between	biotic	and	biotic
	compon	ients.										

CO 4	Apply their ecological knowledge to illustrate and graph a problem and describe the realities that managers face when dealing with complex issues.
CO 5	Relate to the latest Developments in Environmental Pollution Mitigation Tools.

Course Name		DIGITAL COMMUNICATION		
Course Code		18EC61		
CO 1	Associate and apply the concepts of Bandpass sampling towel specified signals and channels.			
CO 2	Analyze	e and compute performance parameters and transfer rates for low pass and bandpass symbol		
	under ideal and corrupted non band limited channels			
CO 3	3 Test and validate symbol processing and performance parameters at the receiver under ideal and			
	corrupted bandlimited channels.			
CO 4	Demonstrate that bandpass signals subjected to corruption and distortion in a bandlimited channel			
	can be processed at the receiver to meet specified performance criteria.			
CO 5	Understand the principles of spread spectrum communications			

Course Name		EMBEDDED SYSTEMS		
Course	Code	18EC62		
CO 1	Describ	e the architectural features and instructions of 32bit microcontroller ARM CortexM3.		
CO 2	Apply t	he knowledge gained for Programming ARM Cortex M3 for different applications.		
CO 3	Understand the basic hardware components and their selection method based on the			
	characteristics and attributes of an embedded system.			
CO 4	Develop the hardware software co-design and firmware design approaches.			
CO 5	Explain the need of real time operating system for embedded system applications			

Course Name		MICROWAVE and ANTENNAS	
Course	Code	18EC63	
CO 1	Describe the use and advantages of microwave transmission		
CO 2	Analyze various parameters related to microwave transmission lines and waveguides		
CO 3	Identify microwave devices for several applications		
CO 4	Analyze various antenna parameters necessary for building a RF system		
CO 5	Recommend various antenna configurations according to the applications		

Course Name		OPERATING SYSTEM		
Course	Code	18EC641		
CO 1	Explain	Explain the goals, structure, operation and types of operating systems.		
CO 2	Apply scheduling techniques to find performance factors.			
CO 3	Explain organization of file systems and roles.			
CO 4	Apply suitable techniques for contiguous and non-contiguous memory allocation			
CO 5	Describe message passing, deadlock detection and prevention methods.			

Course Name		PROGRAMMING IN JAVA
Course Code		18CS653
CO 1	D 1 Explain the object-oriented concepts and JAV	
CO 2	Develop computer programs to solve real world problems in Java	
CO 3	Develop simple GUI interfaces for a computer program to interact with users	

Course Name		EMBEDDED SYSTEMS LABORATORY	
Course Code		18ECL66	
CO 1	0.1 Understand the instruction set of 32 bit microcontroller ARM Cortex M3, and the software		
	required for programming in Assembly and C language.		
CO 2	Develop assembly language programs using ARM Cortex M3 for different applications.		
CO 3	Interface external devices and VO with ARM Cortex M3.		
CO 4	Develop C language programs and library functions for embedded system applications.		

CO 5

Analyze the functions of various peripherals, peripheral registers and power saving modes of ARM Cortex M3

Course Name		COMMUNICATION LABORATORY
Course Code		18ECL67
CO 1	Design	and test circuits for analog modulation and demodulation schemes viz., AM, FM, etc
CO 2	Determ	ine the characteristics and response of microwave waveguide.
CO 3	Determ	ine characteristics of microstrip antennas and devices & compute the parameters
	associated with it.	
CO 4	Design and test the digital and analog modulation circuits and display the waveforms.	
CO 5	Simulate the digital modulation systems and compare the error performance of basic digital	
	modulation schemes	

Course Name		COMPUTER NETWORKS
Course Code		18EC71
CO 1	Understand the concepts of networking.	
CO 2	Describe the various networking architectures.	
CO 3	Identify the protocols and services of different layers.	
CO 4	Distinguish the basic network configurations and standards associated with each network.	
CO 5	Analyze a simple network and measure its parameters	

Course	Name	VLSI DESIGN			
Course	Code	18EC72			
CO 1	Demon	strate understanding of MOS transistor theory, CMOS fabrication flow and technology			
	scaling.				
CO 2	Draw th	he basic gates using the stick and layout diagrams with the knowledge of physical design			
	aspects.				
CO 3	Demonstrate ability to design Combinational, sequential and dynamic logic circuits as per the				
	requirements				
CO 4	Interpret Memory elements along with timing considerations				
CO 5	Interpret testing and testability issues in VLSI Design				

Course	Name	REAL TIME SYSTEM		
Course	Code	18EC731		
CO 1	Explain	the fundamentals of Real time systems and its classifications		
CO 2	Underst	and the concepts of computer control and the suitable computer hardware requirements for		
	real-time applications.			
CO 3	Describe the operating system concepts and techniques required for real time systems			
CO 4	Develop the software algorithms using suitable languages to meet Real time applications.			
CO 5	Apply suitable methodologies to design and develop Real-Time Systems.			

Course Name		CRYPTOGRAPHY
Course Code		18EC744
CO 1	Explain basic cryptographic algorithms to encrypt and decrypt the data.	
CO 2	Use symmetric and asymmetric cryptography algorithms to encrypt and decrypt the information.	
CO 3	Describe the mathematics associated with cryptography.	
CO 4	Apply concepts of modern algebra in cryptography algorithms.	
CO 5	Apply pseudo random sequence in stream cipher algorithms.	

Course Name		ENVIRONMENTAL PROTECTION AND MANAGEMENT					
Course Code		18CV753					
CO 1	Appreci	ate the elements of Corporate Environmental Management systems complying to					
	international environmental management system standards.						
CO 2	Lead pollution prevention assessment team and implement waste minimization options						
CO 3	Develop, Implement, maintain and Audit Environmental Management systems for Organizations.						

Course Name		ENVIRONMENTAL PROTECTION AND MANAGEMENT							
Course Code		18CV753							
CO 1	Appreciate the elements of Corporate Environmental Management syst			ement systems	complyin	ng to			
	international environmental management system standards.			-					
CO 2	Lead po	llution preventi	on assessm	ent tea	am and i	mplement waste	minimization op	otions	
CO 3	Develop	, Implement,	maintain	and	Audit	Environmental	Management	systems	for
	Organiz	ations.						-	

Course Name		COMPUTER NETWORKS LAB
Course	Code	18ECL76
CO 1	Choose suitable tools to model a network	
CO 2	Use the network simulator for learning and practice of networking algorithms	
CO 3	Illustrate the operations of network protocols and algorithms using C programming.	
CO 4	Simulate the network with different configurations to measure the performance parameters.	
CO 5	Implement the data link and routing protocols using C programming	

Course	Name	VLSI LABORATORY
Course	e Code	18ECL77
CO 1	Design	and simulate combinational and sequential digital circuits using VerilogHDL
CO 2	Underst	and the Synthesis process of digital circuits using the EDA tool.
CO 3	Perform ASIC design flow and understand the process of synthesis, synthesis constraints and	
	evaluating the synthesis reports to obtain optimum gate level netlist	
CO 4	Design and simulate basic CMOS circuits like inverter, common source amplifier and differential	
	amplific	ers.
CO 5	Perform	n RTL-GDSII flow and understand the stages in ASIC design.

Course	Name	WIRELESS and CELLULAR COMMUNICATION		
Course Code		18EC81		
CO 1	Underst	tand the Communication theory both Physical and networking associated with GSM,		
	CDMA	& LTE 4G systems.		
CO 2	Explain	concepts of propagation mechanisms like Reflection, Diffraction, Scattering in wireless		
	channels.			
CO 3	Develop a scheme for idle mode, call set up, call progress handling and call tear down in a GSM			
	cellular network.			
CO 4	Develop a scheme for idle mode, call set up, call progress handling and call tear down in a CDMA			
	cellular network.			
CO 5	Understand the Basic operations of Air interface in a LTE 4G system			

Course Name		RADAR ENGINEERING
Course	Code	18EC823
CO 1	Describe the radar fundamentals.	
CO 2	Analyze the radar signals.	
CO 3	Explain the working principle of pulse Doppler radars, their applications and limitations.	
CO 4	Describe the working of various radar transmitters and receivers	
CO 5	Analyze the range parameters of pulse radar system which affect the sys tem performance	