

Course Outcomes COs 2022 Scheme

Course	Name	AV Mathematics-III for EC Engineering		
Course	Code	BMATEC301		
CO1	Demonstra	tte the Fourier series to study the behavior of periodic functions and their applications		
	in system of	tem communications, digital signal processing, and field theory.		
CO2	To use For	To use Fourier transforms to analyze problems involving continuous-time signals		
CO3	To apply Z	To apply Z-Transform techniques to solve difference equations		
CO4	Understand	d that physical systems can be described by differential equations and solve		
CO5	Make use of correlation and regression analysis to fit a suitable mathematical model for			
	statistical o	statistical data		

Course N	Name	Digital System Design using Verilog		
Course C	Code	BEC302		
CO1	Simplify B	Boolean functions using K-map and Quine-McCluskey minimization technique.		
CO2	Analyze ar	Analyze and design for combinational logic circuits.		
CO3	Analyze th	Analyze the concepts of Flip Flops (SR, DT and JK) and to design the synchronous sequential		
	circuits usi	circuits using Flip Flops.		
CO4	Model Cor	Model Combinational circuits (adders, subtractors, multiplexers) and sequential circuits using		
	Verilog de	Verilog descriptions.		

Course Na	ame	Electronic Principles and Circuits
Course Code		BEC303
CO1	Understand	I the characteristics of BJTs and FETs for switching and amplifier circuits.
CO2	Design and conditions.	l analyze amplifiers and oscillators with different circuit configurations and biasing
CO3	Understand the feedback topologies and approximations in the design of amplifiers and oscillators.	
CO4	Design of timers.	circuits using linear ICs for wide range applications such as ADC, DAC, filters and
CO5	Understand circuits.	I the power electronic device components and its functions for basic power electronic

Course N	Name	Network Analysis		
Course Code		BEC304		
Course (Outcomes (Co	os): At the end of the course the student will be able to:		
CO1	Determine	Determine currents and voltages using source transformation/ source shifting/ mesh/ nodal		
	analysis an	analysis and reduce given network using star-delta transformation.		
CO2	Solve prob	Solve problems by applying Network Theorems and electrical laws to reduce circuit.		
CO3	Analyse th	Analyse the circuit parameters during switching transients and apply Laplace transform to solve		
	the given n	network		
CO4	Evaluate th	ne frequency response for resonant circuits and the network parameters for two port		
	networks			

Course Na	ame	Analog and Digital Systems Design Lab
Course Code		BECL305
Course O	utcomes (Co	os): At the end of the course the student will be able to:
CO1	Design and analyze the BJT/FET amplifier and oscillator circuits.	
CO2	Design and rectifiers.	I test Opamp circuits to realize the mathematical computations, DAC and precision
CO3	Design and	I test the combinational logic circuits for the given specifications.
CO4	Test the se	quential logic circuits for the given functionality.
CO5	Demonstra	te the basic circuit experiments using 555 timer.

Course Na	ame	Engineering Science Course
Course Code		BEC306A
CO1	Understand	d the principles of semiconductor Physics
CO2	Understand	d the principles and characteristics of different types of semiconductor devices
CO3	Understand the fabrication process of semiconductor devices	
CO4	Utilize the	mathematical models of semiconductor junctions for circuits and systems.
CO5	Identify the	e mathematical models of MOS transistors for circuits and systems.

Course N	ame	Sensors and Instrumentation	
Course C	ode	BEC306B	
CO1	Understand	d the material properties required to make sensors	
CO2	Understand	d the principle of transducers for measuring physical parameters.	
CO3	Describe th	Describe the manufacturing process of sensors	
CO4	Analyze the instrument characteristics and errors.		
CO5	Describe the principle of operation and develop circuits for multirange Ammeters,		

Course N	ame	Computer Organization and Architecture		
Course C	ode	BEC306C		
CO1	Explain the	e basic organization of a computer system.		
CO2	Describe tl	ne addressing modes, instruction formats and program control statement.		
CO3	Explain different ways of accessing an input/ output device including interrupts.			
CO4	Illustrate the organization of different types of semiconductor and other secondary storage			
	memories.			
CO5	Illustrate simple processor organization based on hard wired control and microprogrammed			
	control.	control.		

Course Na	ame	Applied Numerical Methods for EC Engineers	
Course Co	ode	BEC306D	
CO1	Explain an	d measure errors in numerical computations	
CO2	Test for co	nsistency and solve a system of linear equations.	
CO3	Construct a function which closely fits given n- n-points of an unknown function.		
CO4	Understand and apply the basic concepts related to solving problems by		
	Numerical differentiation and numerical integration.		
CO5	Use appropriate numerical methods to study phenomena modelled as partial differential		
	equations.		

Course Na	ame	Social Connect and Responsibility
Course Co	ode	BSCK307
CO1	Communicate and connect to the surrounding.	
CO2	Create a responsible connection with the society.	
CO3	Involve in the community in general in which they work.	
CO4	Notice the needs and problems of the community and involve them in problem –solving.	
CO5	Develop among themselves a sense of social & civic responsibility & utilize their knowledge	

Course Name		LABVIEW programming
Course Co	ode	BEC358A
CO1	Use LabVIEW to create data acquisition, analysis and display operations	
CO2	Create user interfaces with charts, graph and buttons	
CO3	Use the programming structures and data types that exist in LabVIEW	
CO4	Use various editing and debugging techniques.	

		· ·	_
Course Name		MATLAB Programming	
Course Co	ode	BEC358B	
CO1	Understand	d the syntax of MATLAB for arithmetic computations, arrays, matrices.	·
CO2	Understand	d the built in function, saving and loading data, and create plots	
CO3	Create pro	gram using symbolic computations, Importing and exporting data and files	
CO4	Create pro	gram using character strings, Command line functions and Built-in functions.	

Course Name		C++ Basics
Course Co	ode	BEC358C
CO1	Write C++	program to solve simple and complex problems
CO2	Apply and implement major object-oriented concepts like message passing, function	
	overloading, operator overloading and inheritance to solve real-world problems.	
CO3	Use major C++ features such as Templates for data type independent designs and File I/O to	
	deal with large data set.	
CO4	Analyze, design and develop solutions to real-world problems applying OOP concepts of C++	

Course Na	ame	IOT for Smart Infrastructure	
Course Co	ode	BEC358D	
CO1	Define and	d explain the core concepts and components of IoT and its relevance to smart	
	infrastructi	are. Identify and evaluate the key technologies and communication protocols used in	
	IoT for sm	art infrastructure.	
CO2	Assess the	benefits, challenges, and ethical considerations associated with implementing IoT in	
	smart infra	structure projects and analyse & compare different IoT applications in smart cities,	
	buildings,	transportation, and energy management.	
CO3	Examine re	eal-world case studies of successful IoT implementations in smart infrastructure and	
	extract less	sons learned. Demonstrate an understanding of security and privacy considerations	
	in IoT for smart infrastructure.		
CO4	Discuss the impact of emerging technologies, such as artificial intelligence and 5G, on the future		
	of IoT in smart infrastructure. Apply knowledge and critical thinking skills to propose IoT		
	based solutions for smart infrastructure challenges.		
CO5	Work effe	ctively in teams to analyse, design, and present IoT projects related to smart	
	infrastructi	are and communicate effectively and articulate the potential benefits and limitations	
	of IoT for smart infrastructure.		

Course Name		National Service Scheme (NSS)
Course C	ode	BNSK359
CO1	Understand	d the importance of his / her responsibilities towards society.
CO2	Analyse th the same.	e environmental and societal problems/issues and will be able to design solutions for
CO3	Evaluate the existing system and to propose practical solutions for the same for sustainable development.	
CO4	Implement government or self-driven projects effectively in the field.	
CO5	Develop capacity to meet emergencies and natural disasters & practice national integration an social harmony in general	

Course Name		Physical Education (PE) (Sports and Athletics)
Course Code		BPEK359
CO1	Understand	the ethics and moral values in sports and athletics
CO2	Perform in	the selected sports or athletics of the student's choice
CO3	Understand the roles and responsibilities of organisation and administration of sports and gan	

Course Name	Yoga
Course Code	BYOK359

	2022 23
CO1	Understand the meaning, aim and objectives of Yoga.
CO2	Perform Suryanamaskar and able to Teach its benefits.
CO3	Understand and teach different Asanas by name, its importance, methods and benefits.
CO4	Instruct Kapalabhati and its need and importance.
CO5	Teach different types of Pranayama by its name, precautions, procedure and uses

Course N	Name	Engineering Electromagnetics
Course C	Code	BEC401
Course C	Outcomes (Co	os): At the end of the course the student will be able to:
CO1	Evaluate p	roblems on electrostatic force, electric field due to point, linear, volume charges by
	applying co	onventional methods and charge in a volume.
CO2	Apply Gau	ass law to evaluate Electric fields due to different charge distributions and Volume
	Charge dis	tribution by using Divergence Theorem.
CO3	Determine potential and energy with respect to point charge and capacitance using Laplace	
	equation and Apply Biot-Savart's and Ampere's laws for evaluating Magnetic field for differen	
	current configurations	
CO4	Calculate magnetic force, potential energy and Magnetization with respect to magnetic	
	materials and voltage induced in electric circuits.	
CO5	Apply Max	xwell's equations for time varying fields, EM waves in free space and
	conductors and Evaluate power associated with EM waves using Poynting theorem.	

Course Name		Basic signal Processing
Course Code		BEC402
CO1	Understand	d the basics of Linear Algebra
CO2	Analyze different types of signals and systems	
CO3	Analyze the properties of discrete-time signals & systems	
CO4	Analyse discrete time signals & systems using Z transforms	

Course Name		Principles of Communication Systems
Course C	Code	BEC403
CO1	Understand	d the amplitude and frequency modulation techniques and perform time and
	frequency	domain transformations.
CO2	Identify th	e schemes for amplitude and frequency modulation and demodulation of analog
	signals and	I compare the performance.
CO3	Characterize the influence of channel noise on analog modulated signals.	
CO4	Define the schemes for sampling, pulse amplitude modulation and pulse code modulation	
	systems.	
CO5	Design of	circuits used in different stages of communication transmitters and receivers.

Course Name		Communication laboratory
Course Code		BECL404
CO1	Understand	d the basic concepts of RF transmitters and Receivers.
CO2	Illustrate th	ne AM and FM modulation generation and detection using suitable electronic circuits.
CO3	Design and test the sampling, Multiplexing and pulse modulation techniques using electronic	
	hardware.	
CO4	Design and	d Demonstrate the electronic circuits used for RF transmitters and receivers.

Course Na	ame	8051 Microcontroller
Course Code		BEC405A
CO1	Explain th	e difference between Microprocessors & Microcontrollers, Architecture of 8051
	Microcontroller, Interfacing of 8051 to external memory and Instruction set of 8051.	
CO2	Write 8051 Assembly level programs using 8051 instructions set.	
CO3 Explain the Interrupt system, operation of Timers/Counters and Serial port of		e Interrupt system, operation of Timers/Counters and Serial port of

	8051.
CO4	Write 8051 Assembly language program to generate timings and waveforms using 8051 timers, to send & receive serial data using 8051 serial port and to generate an external interrupt using a switch.
CO5	Write 8051 C programs to generate square wave on 8051 I/O port pin using interrupt and to send & receive serial data using 8051 serial port. Interface simple switches, simple LEDs, ADC 0804, LCD and Stepper Motor to 8051 using 8051 I/O ports.

Course Na	ame	Industrial Electronics
Course Co	ode	BEC405B
CO1	_	fferent types of industrial power devices such as MOSFET, BJT, IGBT etc, there and its operating characteristics.
CO2		d analyse the power electronic circuits such as switch mode regulators, inverters, rectifiers and ac voltage controllers.
CO3	Explain various types of MEMs devices used for sensing pressure, temperature, current, voltage, humidity, vibration etc	
CO4	Familiarize with soft core processors such as ASIC and FPGA.	
CO5		e with computer hardware, software, architecture, instruction set, memory on, multiprocessor architecture.
CO6	Apply protective methods for devices various industrial power devices based on thermal requirements and develop protective methods for the circuits against various electrical parameters.	

Course Name		Operating Systems
Course Code		BEC405C
CO1	Explain the	e goals, structure, operation and types of operating system.
CO2	Apply scheduling techniques to find performance factors.	
CO3	Explain organization of file system and IOCS.	
CO4	Apply suitable techniques for contiguous and non contiguous memory allocation.	
CO5	Describe message passing, deadlock detection and prevention methods.	

Course Name		Control Systems
Course Code		BEC405D
CO1	Develop the mathematical model of mechanical and electrical systems.	
CO2	Develop transfer function for a given control system using block diagram reduction techniques	
	and signal flow graph method.	
CO3	Determine the time domain specifications for first and second order systems.	
CO4	Determine the stability of a system in the time domain using Routh Hurwitz	
CO5	Determine the stability of a system in the frequency domain using Nyquist and bode plots.	

Course Name		Embedded C basics
Course C	Code	BEC456A
CO1	Write C pr	ograms in 8051 for solving simple problems that manipulate input data using different
	instruction	S.
CO2	Develop testing and experimental procedures on 8051Microcontroller, analyse their operation	
	under different cases.	
CO3	Develop programs for 8051Microcontroller to implement real world problems.	
CO4	Develop microcontroller applications using external hardware interface.	

Course Name		PCB Design
Course Code		BEC456B
CO1	Define the detailed circuit diagram and prerequisite before the actual PCB layout.	
CO2	Understand the process of PCB production and Material selection	

CO3	Understand the PCB fabrication by transferring the conductor pattern on base material
CO4	Know about the Plating techniques, Etching process and multilayer PCB board construction
CO5	Understand about new streams in PCB technology and modern facilities for PCB design

Course Name		DAQ using LabVIEW	
Course Code		BEC456C	
CO1	Build tem	perature indicating instruments using LabVIEW (NIDAQ)	
CO2	Interface p	Interface peripheral devices/instruments to LabVIEW	
CO3	Build Lab	Build LabVIEW modules to sense and process audio inputs	
CO4	Apply programming structures, data types, and the analysis and signal processing algorithms in LabVIEW		

Course Name		Risk Management in IOT Implementation
Course C	ode	BEC456D
CO1	Students w	vill be able to explain the core concepts and applications of the Internet of Things and
	its impact	on industries and society. Students will be able to identify and assess risks and
	challenges	in IoT implementations, applying appropriate methodologies and techniques.
CO2	Students will be able to develop comprehensive risk management strategies and mitigation	
	plans tailored to specific IoT projects. Students will be able to implement security controls and	
	best practices to protect IoT devices, networks, and data from potential threats and	
	vulnerabilities.	
CO3	Students will be able to analyse and comply with relevant regulations, standards, and ethical	
	considerations to ensure responsible and secure IoT implementations.	

Course Name		Biology For Engineers	
Course Code		BBOK407	
CO1	Elucidate t	Elucidate the basic biological concepts via relevant industrial applications and case studies.	
CO2	Evaluate th	Evaluate the principles of design and development, for exploring novel bioengineering projects.	
CO3	Corroborate the concepts of biomimetics for specific requirements.		
CO4	Think critically towards exploring innovative biobased solutions for socially relevant problems.		

Course N	ame	Universal human values course	
Course C	ode	BUHK408	
CO1	They wou	ld become more responsible in life, and in handling problems with sustainable	
	solutions, v	while keeping human relationships and human nature in mind.	
CO2	They woul	They would have better critical ability.	
CO3	They would also become sensitive to their commitment towards what they have understood		
	(human values, human relationship and human society).		
CO4	It is hoped that they would be able to apply what they have learnt to their own self in different		
	day-to-day settings in real life, at least a beginning would be made in this direction.		

Course Name		National Service Scheme (NSS)
Course Code		BNSK459
Course O	utcomes (Co	os): At the end of the course the student will be able to:
CO1	Understand	the importance of his / her responsibilities towards society.
CO2	Analyse th	e environmental and societal problems/issues and will be able to design solutions for
	the same.	
CO3	Evaluate the existing system and to propose practical solutions for the same for sustainable	
	development.	
CO4	Implement government or self-driven projects effectively in the field.	
CO5	Develop capacity to meet emergencies and natural disasters & practice national integration and	
	social harmony in general.	

		= · - = - ·
Course Name		Physical Education (PE) (Sports and Athletics)
Course Code		BPEK459
CO1	Understand	d the ethics and moral values in sports and athletics
CO2	Perform in the selected sports or athletics of the student's choice	
CO3	Understand the roles and responsibilities of organisation and administration of sports and games	

Course Name		Yoga	
Course Code		BYOK459	
Course Outcomes (Cos): At the end of the course the student will be able to:			
CO1	Understand	Understand the meaning, aim and objectives of Yoga.	
CO2	Perform Suryanamaskar and able to Teach its benefits.		
CO3	Understand and teach different Asanas by name, its importance, methods and benefits.		
CO4	Instruct Ka	Instruct Kapalabhati and its need and importance.	
CO5	Teach different types of Pranayama by its name, precautions, procedure and uses		